159 research outputs found

    One-step vapour-phase formation of patternable, electrically conductive, superamphiphobic coatings on fibrous materials

    Full text link
    Patternable, electrically conductive coatings having a superhydrophobic and superoleophobic surface have been prepared by one-step vapour-phase polymerisation of polypyrrole in the presence of a fluorinated alkyl silane directly on fibrous substrates. The coated fabrics showed a surface resistance of 0.5-0.8 k&Omega; â–¡-1 with water and hexadecane contact angles of 165&deg; and 154&deg;, respectively.<br /

    Partial exfoliation of layered double hydroxides in DMSO : a route to transparent polymer nanocomposites

    Full text link
    Layered double hydroxides (LDHs), either having nitrate counter anions or intercalated with organic molecules, have been for the first time partially exfoliated in dimethyl sulfoxide (DMSO) to form a transparent suspension. Atomic force microscopy (AFM) images showed that both the lateral size and the thickness of the LDH nanoplatelets were decreased after the exfoliation. The organic-LDHs maintained their intercalation characteristics, i.e. the thermal stability improvement of the incorporated organic anions, after the exfoliation in DMSO. Transparent ethylene-vinyl alcohol copolymer (EVOH) nanocomposite films containing partially exfoliated LDHs intercalated with UV absorbers were prepared using DMSO as the processing solvent. As the first reported example of a highly transparent LDH/polymer composite, the obtained composite film had a visible light transmittance of 90% (comparable to that of the pure matrix), was flexible and exhibited an excellent UV-shielding capability and thermal stability. <br /

    Cloning and expression trait of UDP-glucose:flavonoid 3-O-glucosyltransferase gene (UF3GT) in turnip

    Get PDF
    Anthocyanin is a class of important secondary metabolites in plants. UDP-glucose:flavonoid  3-O-glucosyltransferase (UF3GT) is a committed catalytic enzyme in the late stage of anthocyanin  biosynthesis. BrUF3GT1 and BrUF3GT2 genes were cloned by reverse transcription polymerase chain reaction  (RT-PCR) method from ‘Tsuda’ and ‘Yurugi Akamaru’ turnips. The open reading frame (ORF) of BrUF3GT1 and  BrUF3GT2 genes contained 1407 bp encoding proteins of 468 amino acids. Amino acid sequence analysis  showed that BrUF3GT1 and BrUF3GT2 had 87% identity to UF3GT of Arabidopsis thaliana, and the  glycosyltransferase protein family domain was in the amino acids sequence from 16 to 453. The nucleotide  sequence of BrUF3GT1 and BrUF3GT2 genes showed only seven nucleotide differences, and one common  deduced amino acid sequence. The northern blotting results showed that the expression of BrUF3GT1 and BrUF3GT2 genes could be induced by irradiation of ultra-violet A (UV-A), and the expression of the genes was correlated with light-exposure time. The 51.88 and 51.89 KDa proteins of BrUF3GT1 and BrUF3GT2 were  successfully purified after prokaryotic induced expression.Key words: Turnip, UDP-glucose:flavonoid 3-O-glucosyltransferase (UF3GT) gene, gene clone, sequence analysis, gene expression

    Superwettable PVDF/PVDF-g-PEGMA Ultrafiltration Membranes

    Get PDF
    Poly(vinylidene fluoride) (PVDF) is a common and inexpensive polymeric material used for membrane fabrication, but the inherent hydrophobicity of this polymer induces severe membranes fouling, which limits its applications and further developments. Herein, we prepared superwettable PVDF membranes by selecting suitable polymer concentration and blending with PVDF-graft-poly(ethylene glycol) methyl ether methacrylate (PVDF-g-PEGMA). This fascinating interfacial phenomenon causes the contact angle of water droplets to drop from the initial value of over 70° to virtually 0° in 0.5 s for the best fabricated membrane. The wetting properties of the membranes were studied by calculating the surface free energy by surface thermodynamic analysis, by evaluating the peak height ratio from Raman spectra, and other surface characterization methods. The superwettability phenomenon is the result of the synergetic effects of high surface free energy, the Wenzel model of wetting, and the crystalline phase of PVDF. Besides superwettability, the PVDF/PVDF-g-PEGMA membranes show great improvements in flux performance, sodium alginate (SA) rejection, and flux recovery upon fouling

    CRAI Biblioteca del Campus de Mundet. Memòria d'activitats 2016

    Get PDF
    Memòria que recull les activitats realitzades al CRAI Biblioteca del Campus de Mundet durant l'any 2016

    Superhydrophobic fabrics from hybrid silica sol-gel coatings: Structural effect of precursors on wettability and washing durability

    Full text link
    Particle-containing silica sol was synthesized by co-hydrolysis and co-condensation of two silane precursors, tetraethylorthosilicate (TEOS) and an organic silane composed of a non-hydrolyzable functional group (e.g., alkyl, flourinated alkyl, and phenyl), and used to produce superhydrophobic coatings on fabrics. it has been revealed that the non-hydrolyzable functional groups in the organic silanes have a considerable influence on the fabric surface wettability. When the functional group was long chain alkyl (C16), phenyl, or flourinated alkyl (C8), the treated surfaces were highly superhydrophobic with a water contact angle (CA) greater than 170&deg;, and the CA value was little affected by the fabric type. The washing durability of the superhydrophobic coating was improved by introducing the third silane containg epoxide group, 3-glycidoxypropyltrimethoxsilane (GPTMS), for synthesis. Although the presence of epoxide groups in the coating slightly reduced the fabrics\u27 superhydrophobicity, the washing durability was considerably improved when polyester and cotton fabrics were used as substrates

    Safety and Technical Feasibility of Sustainable Reuse of Shale Gas Flowback and Produced Water after Advanced Treatment Aimed at Wheat Irrigation

    Get PDF
    Treatment and reuse of flowback and produced water (FPW) from shale gas extraction for agricultural irrigation has often been proposed as a sustainable alternative to disposal via deep-well injection. Here, we investigate the effects of FPW on the germination period, macroscopic growth, element enrichment, and grain gene expression of wheat upon dilution and advanced membrane treatment of the liquid stream. Compared to tap water, irrigation with treated FPW shortened the germination time, slightly improved the seed vigor index, and ensured a similar germination rate. On the other hand, the biomass and grain yield of mature wheat irrigated with treated FPW and with FPW diluted to 5% groups decreased compared to tests using tap water. After a whole growth cycle of wheat, higher concentrations of nutrients, such as K, Ca, and Mg were enriched in mature wheat tissue irrigated with treated FPW. However, the Pb and Cr contents of mature wheat grains treated with three types of irrigation waters exceeded the standard to varying degrees. A total of 1973 differentially expressed genes were mainly related to binding, catalytic activity, cellular process, metabolic process, and cell part, more than half of which were upregulated and induced by irrigation with treated FPW. These findings provide critical guidance for the reuse of treated shale gas FPW for agricultural application from the perspective of plant uptake of toxic elements, as well as crop and human health risks

    Pax transactivation domain-interacting protein is required for preserving hematopoietic stem cell quiescence via regulating lysosomal activity

    Get PDF
    Hematopoietic stem cells (HSC) maintain lifetime whole blood hematopoiesis through self-renewal and differentiation. In order to sustain HSC stemness, most HSC reside in a quiescence state, which is affected by diverse cellular stress and intracellular signal transduction. How HSC accommodate those challenges to preserve lifetime capacity remains elusive. Here we show that Pax transactivation domain-interacting protein (PTIP) is required for preserving HSC quiescence via regulating lysosomal activity. Using a genetic knockout mouse model to specifically delete Ptip in HSC, we find that loss of Ptip promotes HSC exiting quiescence, and results in functional exhaustion of HSC. Mechanistically, Ptip loss increases lysosomal degradative activity of HSC. Restraining lysosomal activity restores the quiescence and repopulation potency of Ptip-/- HSC. Additionally, PTIP interacts with SMAD2/3 and mediates transforming growth factor-β signaling-induced HSC quiescence. Overall, our work uncovers a key role of PTIP in sustaining HSC quiescence via regulating lysosomal activity

    Phenolic acid-induced phase separation and translation inhibition mediate plant interspecific competition

    Get PDF
    Phenolic acids (PAs) secreted by donor plants suppress the growth of their susceptible plant neighbours. However, how structurally diverse ensembles of PAs are perceived by plants to mediate interspecific competition remains a mystery. Here we show that a plant stress granule (SG) marker, RNA-BINDING PROTEIN 47B (RBP47B), is a sensor of PAs in Arabidopsis. PAs, including salicylic acid, 4-hydroxybenzoic acid, protocatechuic acid and so on, directly bind RBP47B, promote its phase separation and trigger SG formation accompanied by global translation inhibition. Salicylic acid-induced global translation inhibition depends on RBP47 family members. RBP47s regulate the proteome rather than the absolute quantity of SG. The rbp47 quadruple mutant shows a reduced sensitivity to the inhibitory effect of the PA mixture as well as to that of PA-rich rice when tested in a co-culturing ecosystem. In this Article, we identified the long sought-after PA sensor as RBP47B and illustrated that PA-induced SG-mediated translational inhibition was one of the PA perception mechanisms.This work was supported by funds from the National Natural Science Foundation of China (31970641); the State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Center for Life Sciences; the USDA National Institute of Food and Agriculture, Hatch project 3808 to W.W.; the National Natural Science Foundation of China (31970283); Beijing Nova Program of Science and Technology (Z191100001119027); Capital Normal University and State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, to M.Z.; the European Commission Marie Curie-IEF reSGulating-702473 to E.G.B.; Natural Science Foundation of Fujian Province (2020J01546) to J.L.; Knut and Alice Wallenberg Foundation and Swedish Research Council VR to P.V.B.; International Postdoctoral Exchange Fellowship Program and Postdoctoral Fellowship of Center for Life Sciences, and National Natural Science Foundation of China (3220050423) to Z.X.; and the Postdoctoral Fellowship of Center for Life Sciences to S.Z., Y.L. and C.C.Peer reviewe
    • …
    corecore