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This paper investigates the problem of two kinds of function projective synchronization of financial chaotic system with definite
integration scaling function, which are not fully considered in the existing research. Different from the previous methods, in
this paper, the following two questions are investigated: (1) two kinds of the definite integration scaling function projective
synchronization are given; (2) the upper and lower limit of the definite integral scaling function are the bound dynamical systems.
Finally, illustrative example is provided to show the effectiveness of this method.

1. Introduction

In nonlinear areas, researchers are striving to utilize the
theory of nonlinear dynamics, especially the chaos theory, to
study the complexity of economic and financial systems in
recent years [1–6]. Since Strotz et al. have done the pioneering
work in this area [7], various economics chaotic models have
been proposed, such as the Kaldorian model [8], the IS-LM
model [9–11], the hyperchaotic finance system [12], and other
nonlinear dynamical models [13–16].

It is well known that economic chaotic systems are
inevitably influenced by external disturbances stemmed from
environmental interference [17–22], and external distur-
bances may lead to the destabilization of economic and
financial chaotic systems and cause undesirable results. It is
necessary to study the global stabilization of economic and
financial chaotic systems under the presence of external dis-
turbance. Some results have been reported about stabilization
of complex systems with external disturbance [23, 24].

In the past few decades, projective synchronization of
chaotic systems has attracted a great deal of attention,
because projective synchronization can obtain the effective
results faster. Later, with the deepening of the research,
various projective synchronization methods were discussed.

For example, in [25–29], the authors investigated function
projective synchronization of chaotic systems, and the scaling
function is selected to be constant or unity. In [30–33],
the authors discussed function projective synchronization of
chaotic systems with the unary scaling function. Up to now,
most of research efforts mentioned above have concentrated
on studying the presetting scaling function in numerical
examples yet. About the problem of the definite integral
scaling function, to the best of the authors’ knowledge, it has
rarely been investigated, which still remains open. Motivated
by the existingworks, in the present paper, we intend to derive
some scaling function projective synchronization criteria for
the chaotic financial system. Different from the previous
methods, our main contributions are as follows: (1) we give
two kinds of the new scaling function projective synchro-
nization, that is, the definite integration scaling function
projective synchronization and adaptive definite integration
scaling function projective synchronization; (2) we consider
that the upper and lower limit of the definite integral scaling
function are the bound dynamical systems, which can be
the stable equilibrium point, the stable periodic orbit, or the
chaotic attractor.

The rest of this paper is organized as follows: Model
and preliminaries are presented in Section 2. The sufficient

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2015, Article ID 731376, 7 pages
http://dx.doi.org/10.1155/2015/731376



2 Discrete Dynamics in Nature and Society

conditions of synchronization are given in Section 3.
Section 4 presents an example and relates simulation results.
The conclusions are given in Section 5.

2. Model and Preliminaries

In 2001, a new dynamical model of the financial system was
proposed. The model is described by the following three-
dimensional system:
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where 𝑥
1
is the interest rate, 𝑥

2
is the investment demand,

and 𝑥
3
is the price index. 𝑎 > 0 represents the saving

amount, 𝑏 > 0 represents the cost per investment, and 𝑐 > 0
represents the elasticity of demand of commercial markets.
When parameters 𝑎 = 0.9, 𝑏 = 0.2, and 𝑐 = 1.5, system (1)
exhibits chaotic behavior [14].

Now, we consider the following system with external
perturbation and system (1) changes into the following
system:
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where V̇ = −1.2𝑦
1
𝑦

2
− 0.5V.

In essence, three-dimensional system (2) with external
perturbation can be seen as the following four-dimensional
system without external perturbation:
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and system (3) exhibits chaotic behavior for the parameters
𝑎 = 0.9, 𝑏 = 0.2, 𝑐 = 1.5, and ℎ = −5 (see Figures 1–6).

Thebifurcation diagramwould be far better to summarize
all of the possible behaviors as the parameter varies on one
diagram. For −14 ≤ ℎ ≤ 1.5, the bifurcation diagram of four-
dimensional system (3) shows the complicated bifurcation
phenomena in Figure 7.

Remark 1. The above analysis shows that the chaotic financial
system remained as chaotic characteristics in the appropriate
external perturbation. More detailed analysis on chaotic
system (2) will be reported in a forthcoming paper.

3. Main Results

In this section, we give two kinds of integral proportional
function synchronization definition and discuss the synchro-
nization of the chaotic finance system.
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Figure 4: 𝑦
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phase plane, the chaotic attractor.
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Figure 5: 𝑦
2
-V phase plane, the chaotic attractor.

The drive system is given by system (1), and the response
system with external perturbation is the following controlled
system:
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where V̇ = −1.2𝑦
1
𝑦
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− 0.5V.

Definition 2. For systems (1) and (4), if
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Figure 6: 𝑦
3
-V phase plane, the chaotic attractor.
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Figure 7: Bifurcation diagram of system (3).

then the status of the response system and the drive system
is called adaptive definite integration scaling function pro-
jective synchronization (ADISFPS), where �̇�
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Remark 3. For Definition 2, when the upper and lower limit
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space, which satisfies the assumption.
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Remark 4. Synchronization of the financial systems shows
they can maintain consistency; that is, the economic systems
in two different areas are to keep synchronized development
by applying the appropriate control conditions. In economic
activities, the driving system can be understood as a virtual
economic goal, the response system is thought as a controlled
object, and themanager’s goal is to control a controlled object
to a virtual economic goal. In practice, due to the complexity
of the economic environment, the financial systems are not
always completely synchronization; some complex synchro-
nization methods should be considered. Therefore, the study
of projective synchronization is meaningful in real economic
activities.

Theorem 5. System (1) and system (4) are asymptotically
synchronized with the following adaptive control mechanism:
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Substituting (6) into (11) yields
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Choose a candidate Lyapunov function as follows:
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where 𝐿 > max{−𝑎, −𝑏, −𝑐}.
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It is clear that 𝑉 is positive definite and ̇

𝑉 is negative
definite. According to the Lyapunov stability theorem, the
trivial solution of error system (11) is asymptotically stable,
which implies that the synchronization of systems (1) and (4)
is achieved. The proof of the theorem is completed.

Remark 6. Synchronization conditions of the chaotic finan-
cial system with external perturbation are derived from
Theorem 5. When the chaotic financial system with external
perturbation is thought as the four-dimensional system
without external perturbation, similar toTheorem 5, we may
get the following synchronization condition.

Remark 7. In [25–33], research efforts have concentrated
on studying a presetting scaling function with numerical
examples. In this paper, the scaling function can be the
definite integration, and the upper and lower limit of the
definite integral scaling function are the bound dynamical
systems.
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Theorem 8. System (1) and system (15) are asymptotically
synchronized with the following adaptive control mechanism:
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The proofs ofTheorem 8 follow directly fromTheorem 5.
Thus we leave out their proofs here.

Definition 9. For systems (1) and (4), if
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then the status of the response system and the drive system
is called the definite integration scaling function projective
synchronization (DISFPS).
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According to Definition 9, similar to Theorems 5 and 8,
we may get Theorems 11 and 12.

Theorem 11. System (1) and system (4) are asymptotically
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𝑢

1
= 𝜅

1
𝑥

1
− 𝑦

1
𝑦

2
+ (∫

𝑡

0

𝜅

1
(𝑠) 𝑑𝑠) 𝑥

1
𝑥

2
+ 𝑘

1
𝑒

1
,

𝑢

2
= 𝜅

2
𝑥

2
+ ∫

𝑡

0

𝜅

2
(𝑠) 𝑑𝑠 − 1 + 𝑦

2

1

− (∫

𝑡

0

𝜅

2
(𝑠) 𝑑𝑠) 𝑥

2

1
+ 𝑘

2
𝑒

2
,

𝑢

3
= 𝜅

3
𝑥

3
− ℎV + 𝑘

3
𝑒

3
,

V̇ = −1.2𝑦
1
𝑦

2
− 0.5V,

̇

𝑘

𝑖
= −𝜆

𝑖
𝑒

2

𝑖
, 𝑖 = 1, 2, 3.

(18)

Theorem 12. System (1) and system (15) are asymptotically
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The proofs of Theorems 11 and 12 follow directly from
Theorem 5. Thus we leave out their proofs here.

4. Simulation and Results

In this section, computer simulations are used to verify and
demonstrate the effectiveness of Theorem 5.

The dynamical systems �̇�
𝑖
= 𝑓(𝑤

𝑖
, 𝑡) and ̇

𝛿

𝑖
= 𝑔(𝛿

𝑖
, 𝑡) are

the following chaotic systems, and two chaotic systems are
bounded:

�̇�

1
= 𝑤

2
𝑤

3
− 2𝑤

1
,

�̇�

2
= (𝑤

3
− 5)𝑤

1
− 2𝑤

2
,

�̇�

3
= 1 − 𝑤

1
𝑤

2
,

̇

𝛿

1
= 36 (𝛿

2
− 𝛿

1
) ,

̇

𝛿

2
= 20𝛿

2
− 𝛿

1
𝛿

3
,

̇

𝛿

3
= − 3𝛿

3
+ 𝛿

1
𝛿

2
.

(20)

In the simulations, the initial values of the drive and
response systems are taken as (3, 1, 2) and (−2, 3, −3), respec-
tively, the initial values of the dynamical systems �̇�

𝑖
= 𝑓(𝑤

𝑖
, 𝑡)

and ̇

𝛿

𝑖
= 𝑔(𝛿

𝑖
, 𝑡) are taken as (6, 7, 1) and (5, 3, 7) and the

initial values of external perturbation system V = 2 and
𝑘

𝑖
= 1, 𝑖 = 1, 2, 3, respectively.The simulated results about the

function project synchronization are shown in Figures 1 and
2. In Figure 8, three state errors versus time are shown and it is
also shown that the state errors tend to zero asymptotically as
time evolves. Figure 9 shows the feedback gain 𝑘

𝑖
, 𝑖 = 1, 2, 3.

Numerical simulations of Theorems 8, 11, and 12 can be
illustrated in a similar way as shown in Theorem 5; thus we
leave out numerical simulations here.

5. Conclusion

First, we have discussed that the three-dimensional chaotic
system with external perturbation can be seen as the four-
dimensional chaotic system without external perturbation.
Second, the definite integral scaling function synchronization
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Figure 8: Synchronization errors with time 𝑡.

0
10

−20

−30

−10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

k
3

k
2

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

k
1

Figure 9: Dynamic curve of the feedback gain 𝑘
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, 𝑖 = 1, 2, 3.

problem of financial chaotic systems is investigated. Finally,
numerical simulations are then given to verify the effective-
ness of the proposed adaptive schemes.
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