16 research outputs found

    Blood-Chemistry Parameters Comparison among Different Age Stages of Chinese Sturgeon <i>Acipenser sinensis</i>

    No full text
    The Chinese sturgeon (Acipenser sinensis), a critically endangered migratory fish native to the Yangtze River estuary, is experiencing alarming population declines. Understanding the physiological and biochemical profiles of this species is paramount for its conservation. However, due to limited sample availability, blood biochemical parameters have remained understudied. In this study, we examined blood chemistry in artificially cultured Chinese sturgeon ranging from 2 to 15 years of age. Our results revealed age-related trends: total protein (TP), albumin (ALB), globulin (GLO), total cholesterol (CHOL), high-density lipoprotein (HDL), low-density lipoprotein (LDL), estrogen (E2), testosterone (T), testosterone undecanoate (11-KT), and red blood cell count (RBC) increased with age, while glucose (GLU), uric acid (UA), and serum creatinine (CREA) decreased. Levels of C-reactive protein (CRP) declined from 3 to 7 years but rose from 8 to 15 years. Blood parameters showed stabilization with age, indicating enhanced resilience and immunity. Significant alterations in parameters at ages 2–3 and 14–15 suggest critical developmental stages. These findings are crucial for understanding sturgeon growth, development, migration, and reproduction, underscoring the necessity for targeted conservation efforts during pivotal life stages

    Liver Transcriptome and miRNA Analysis of Silver Carp (Hypophthalmichthys molitrix) Intraperitoneally Injected With Microcystin-LR

    No full text
    Next-generation sequencing was used to analyze the effects of toxic microcystin-LR (MC-LR) on silver carp (Hypophthalmichthys molitrix). Silver carps were intraperitoneally injected with MC-LR, and RNA-seq and miRNA-seq in the liver were analyzed at 0.25, 0.5, and 1 h. The expression of glutathione S-transferase (GST), which acts as a marker gene for MC-LR, was tested to determine the earliest time point at which GST transcription was initiated in the liver tissues of the MC-LR-treated silver carps. Hepatic RNA-seq/miRNA-seq analysis and data integration analysis were conducted with reference to the identified time point. Quantitative PCR (qPCR) was performed to detect the expression of the following genes at the three time points: heme oxygenase 1 (HO-1), interleukin-10 receptor 1 (IL-10R1), apolipoprotein A-I (apoA-I), and heme binding protein 2 (HBP2). Results showed that the liver GST expression was remarkably decreased at 0.25 h (P &lt; 0.05). RNA-seq at this time point revealed that the liver tissue contained 97,505 unigenes, including 184 significantly different unigenes and 75 unknown genes. Gene Ontology (GO) term enrichment analysis suggested that 35 of the 145 enriched GO terms were significantly enriched and mainly related to the immune system regulation network. KEGG pathway enrichment analysis showed that 18 of the 189 pathways were significantly enriched, and the most significant was a ribosome pathway containing 77 differentially expressed genes. miRNA-seq analysis indicated that the longest miRNA had 22 nucleotides (nt), followed by 21 and 23 nt. A total of 286 known miRNAs, 332 known miRNA precursor sequences, and 438 new miRNAs were predicted. A total of 1,048,575 mRNA–miRNA interaction sites were obtained, and 21,252 and 21,241 target genes were respectively predicted in known and new miRNAs. qPCR revealed that HO-1, IL-10R1, apoA-I, and HBP2 were significantly differentially expressed and might play important roles in the toxicity and liver detoxification of MC-LR in fish. These results were consistent with those of high-throughput sequencing, thereby verifying the accuracy of our sequencing data. RNA-seq and miRNA-seq analyses of silver carp liver injected with MC-LR provided valuable and new insights into the toxic effects of MC-LR and the antitoxic mechanisms of MC-LR in fish.The RNA/miRNA data are available from the NCBI database Registration No. : SRP075165

    Combined effects of seawater acidification and high temperature on hemocyte parameters in the thick shell mussel Mytilus coruscus

    No full text
    In this work, flow cytometry was used to examine the immune responses of hemocytes in the thick shell mussel Mytilus coruscus exposed to six combinations of pH (7.3, 7.7, and 8.1) and temperature (25 °C and 30 °C) for 14 days. Temperature showed significant effects on all immune parameters throughout the experiment. Generally, the total hemocyte count (THC), phagocytosis (Pha), esterase (Est), and lysosomal content (Lyso) significantly decreased at high temperature. By contrast, the hemocyte mortality (Hm) and reactive oxygen species (ROS) levels increased at high temperature. Moreover, pH significantly influenced all the immune parameters, but its effects are not as strong as those of temperature; only Hm, Est, and THC were negatively affected by pH throughout the experiment. After 7 days, low pH resulted in decreased Lyso and increased Hm and ROS levels. Significant interactions between temperature and pH in most measured parameters from 7 days suggested that long-term combined stress, i.e., low pH and high temperature, would cause more severe effects on mussel health than an individual stressor in the field

    Transgenerational effects of short-term exposure to acidification and hypoxia on early developmental traits of the mussel Mytilus edulis

    No full text
    Transgenerational effects of multiple stressors on marine organisms are emerging environmental themes. We thus experimentally tested for transgenerational effects of seawater acidification and hypoxia on the early development traits of the mussel Mytilus edulis. Fertilization rate, embryo deformity rate, and larval shell length were negatively impacted by acidification, while hypoxia had little effect except for increasing deformity rates under control pH conditions. Offspring from low pH/O2 parents were less negatively affected by low pH/O2 conditions than offspring from control parents; however, low pH/O2 conditions still negatively affected developmental traits in offspring from acclimated parents compared to control seawater conditions. Our results demonstrate that experimental seawater acidification and hypoxia can adversely affect early developmental traits of M. edulis and that parental exposure can only partially alleviate these impacts. If experimental observations hold true in nature, it is unlikely that parental exposure will confer larval tolerance to ocean acidification for M. edulis

    Synergistic Effects of Nano-ZnO and Low pH of Sea Water on the Physiological Energetics of the Thick Shell Mussel Mytilus coruscus

    No full text
    In order to investigate the ecotoxicological effects of nano-ZnO particles and seawater acidification on marine bivalves, the thick shell mussels, Mytilus coruscus were subjected to joint treatments with different nano-ZnO concentrations (0 [control], 2.5 [medium] and 10 mg L-1 [high]) under two pH levels (7.7 [low]and 8.1 [control]) for 14 days. The results showed that respiration rate (RR), absorption efficiency (AE), clearance rate (CR), O:N ratio and scope for growth (SFG) were significantly reduced with nano-ZnO concentration increase, but ammonium excretion rate (ER) was increased. Low pH significantly reduced CR, RR, SFG, and O:N ratio of the mussels especially under high nano-ZnO conditions, and significantly increased ER. Principal component analysis (PCA) showed consistent relationships among most tested parameters, especially among SFG, RR, O:N ratio and CR under the normal pH and 0 nano-ZnO conditions. Therefore, seawater acidification and nano-ZnO interactively impact the ecophysiological responses of mussels and cause more severe effects when they appear concurrently

    Antioxidant response of the hard shelled mussel Mytilus coruscus exposed to reduced pH and oxygen concentration

    No full text
    Ocean acidification (OA) and hypoxic events are increasing worldwide problems, their interactive effects have not been well clarified, although their co-occurrence is prevalent. The East China Sea (the Yangtze River estuary area) suffers from not only coastal hypoxia but also pH fluctuation, representing an ideal study site to explore the combined effect of OA and hypoxia on marine bivalves. We experimentally evaluated the antioxidant response of the mussel Mytilus coruscus exposed to three pH levels (8.1, 7.7 and 7.3) at two dissolved oxygen (DO) levels (2.0 mg/L and 6.0 mg/L) for 72h. Activities of superoxide dismutase, catalase, glutathione peroxidase, acid phosphatase, and alkaline phosphatase and levels of malondialdehyde were measured in gills and hemolymph. All enzymatic activities in hemolymph and gills followed a similar pattern throughout the experiment duration. Generally, low DO showed greater effects on enzyme activities than elevated CO2. Significant interactions between DO, pH and time were only observed at superoxide dismutase and catalase in both tissues. PCA revealed positive relationships between most enzyme activities in both gills and hemolymph with the exception of alkaline phosphatase activity and the level of malondialdehyde in the hemolymph. Overall, our results suggested that decreased pH and low DO induced similar antioxidant responses in the hard shelled mussel, and showed an additive effect on most enzyme activities. The evaluation of multiple environmental stressors, a more realistic scenario than single ones, is crucial to predict the effect of future global changes on coastal species and our results supply some insights on the potential combined effects of reduced pH and DO on marine bivalves

    Effects of Ocean Acidification, Hypoxia, and Warming on the Gut Microbiota of the Thick Shell Mussel Mytilus coruscus Through 16S rRNA Gene Sequencing

    No full text
    Gut microbiota play a very important role in the health of the host, such as protecting from pathogens and maintaining homeostasis. However, environmental stressors, such as ocean acidification, hypoxia, and warming can affect microbial communities by causing alteration in their structure and relative abundance and by destroying their network. The study aimed to evaluate the combined effects of low pH, low dissolved oxygen (DO) levels, and warming on gut microbiota of the mussel Mytilus coruscus . Mussels were exposed to two pH levels (8.1, 7.7), two DO levels (6, 2 mg L −1 ), and two temperature levels (20, 30°C) for a total of eight treatments for 30 days. The experiment results showed that ocean acidification, hypoxia, and warming affected the community structure, species richness, and diversity of gut microbiota. The most abundant phyla noted were Proteobacteria, Bacteroidetes, and Firmicutes. Principal coordinate analysis (PCoA) revealed that ocean acidification, hypoxia, and warming change microbial community structure. Low pH, low DO, and increased temperature can cause shifting of microbial communities toward pathogen dominated microbial communities. Linear discriminant analysis effect size (LEfSe) showed that the significantly enriched biomarkers in each group are significantly different at the genus level. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis revealed that the gut microbiome of the mussels is associated with many important functions, such as amino acid transport and metabolism, transcription, energy production and conservation, cell wall, membrane and envelope biogenesis, and other functions. This study highlights the complexity of interaction among pH, DO, and temperature in marine organisms and their effects on the gut microbiota and health of marine mussels. </p

    Image_1_Synergistic Effects of Nano-ZnO and Low pH of Sea Water on the Physiological Energetics of the Thick Shell Mussel Mytilus coruscus.PDF

    No full text
    <p>In order to investigate the ecotoxicological effects of nano-ZnO particles and seawater acidification on marine bivalves, the thick shell mussels, Mytilus coruscus were subjected to joint treatments with different nano-ZnO concentrations (0 [control], 2.5 [medium] and 10 mg L<sup>-1</sup> [high]) under two pH levels (7.7 [low]and 8.1 [control]) for 14 days. The results showed that respiration rate (RR), absorption efficiency (AE), clearance rate (CR), O:N ratio and scope for growth (SFG) were significantly reduced with nano-ZnO concentration increase, but ammonium excretion rate (ER) was increased. Low pH significantly reduced CR, RR, SFG, and O:N ratio of the mussels especially under high nano-ZnO conditions, and significantly increased ER. Principal component analysis (PCA) showed consistent relationships among most tested parameters, especially among SFG, RR, O:N ratio and CR under the normal pH and 0 nano-ZnO conditions. Therefore, seawater acidification and nano-ZnO interactively impact the ecophysiological responses of mussels and cause more severe effects when they appear concurrently.</p
    corecore