28 research outputs found

    Bidirectional Function of Shenghe Powder on Repair of Radiation-induced DNA Damage in Glioma and Astrocyte

    Get PDF
    The study assessed the effect of Chinese herbs of Shenghe Powder (SHP) on the repair capacity of gamma-radiation-induced DNA damage in rat glioma cells (C6) compared with normal human astrocytes (NHA). C6 and NHA Cells treated with SHP and irradiated with 2Gy of gamma radiation. Cells growth inhibition were analysed by MTT assay, DNA damage and repair were evaluated using phosphorylated histone H2AX (γH2AX) at the appointed time. Apoptosis was observed by flow cytometry, and the expression of DNA-dependent protein kinase (DNA-PK) and surviving proteins were assessed by Western blot analysis. SHP depressed the radiation-induced DNA double-strand break and enhanced the DNA repair capacity in NHA, which correlated with promotion of DNA-PK phosphorylation. In contrast, SHP enhanced radiosensitivity of C6 cells, the pre-treatment with SHP resulted in reduced numbers of γH2AX foci in irradiated C6 cells, and decreased the expression of DNA-PK and survivn(P<0.005). It significant effect on inhibition of C6 cell proliferation and induced C6 cells apoptosis in a time-depdendent manner than radiation alone (P<0.001). SHP showed a novel bidirectional function to improve the radioresistance of NHA and enhanced radiosensitivity of C6 cells. This implies that SHP can protect the NHA from radiant damage and enhanced the sensitivity of C6 cells to radiation, which could be attributed to the alteration of survivin DNA-PK in DNA repair processes

    A multivariate analysis of the relationship between work ability and S. japonicum infection in Dongting Lake Region, in China

    No full text
    A cross-sectional case-control study on the association between the reduced work ability and S. japonicum infection was carried out in a moderate endemic area for schistosomiasis japonica in the southern part of Dongting lake in China. A total of 120 cases with reduced work ability and 240 controls paired to the case by age, sex, occupation and without reduced work ability, participated in the study. The mean age for individuals was 37.6 years old (21-60), the ratio of male: female was 60:40, the prevalence of S. japonicum in the individuals was 28.3%. The results obtained in this study showed that the infection of S. japonicum in case and control groups was 49.2% (59/120) and 17.9% (43/240), respectively. Odds ratio for reduced work ability among those who had schistosomiasis was 4.34 (95%), confidence interval was 2.58-7.34, and among those who had S. japonicum infection (egg per gram >; 100) was up to 12.67 (95%), confidence interval was 3.64-46.39. After odds ratio was adjusted by multiple logistic regression, it was confirmed that heavier intensity of S. japonicum infection and splenomegaly due to S. japonicum infection were the main risk factors for reduced work ability in the population studied.Um estudo seccional de casos controles da associação entre a capacidade reduzida para o trabalho e a infecção por S. japonicum foi levada a efeito em região moderadamente endêmica para esquistossomose japônica na parte sul do lago Dongting, China. Um total de 120 casos com redução da capacidade de trabalho e 240 controles pareados no que diz respeito a idade, sexo, ocupação sem redução da capacidade de trabalho. A idade média dos pacientes foi 37,6 anos (21-60) e a relação masculino:feminino foi 60:40. A prevalência do S. japonicum foi de 28,3%. Os resultados obtidos neste estudo mostraram que a infecção nos casos e no grupo controle foi 49,2% (59/120) e 17,9% (43/240) respectivamente. A média para redução da capacidade de trabalho entre aqueles com esquistossomose foi 4,34 (95%) e o intervalo de confiança foi 2,58-7,34 e entre aqueles com infecção por S. japonicum (ovo por grama >; 100) foi de 12,67 (95%), com intervalo de confiança de 3,64-46,39. Depois que a média foi ajustada através de regressão logística múltipla, foi confirmado que a maior intensidade de infecção pelo S. japonicum e a esplenomegalia eram os fatores principais de risco para a reduzida capacidade de trabalho da população estudada

    Bidirectional Function Of Shenghe Powder On Repair Of Radiationinduced Dna Damage In Glioma And Astrocyte

    No full text
    The study assessed the effect of Chinese herbs of Shenghe Powder (SHP) on the repair capacity of gamma-radiation-induced DNA damage in rat glioma cells (C6) compared with normal human astrocytes (NHA). C6 and NHA Cells treated with SHP and irradiated with 2Gy of gamma radiation. Cells growth inhibition were analysed by MTT assay, DNA damage and repair were evaluated using phosphorylated histone H2AX (γH2AX) at the appointed time. Apoptosis was observed by flow cytometry, and the expression of DNA-dependent protein kinase (DNA-PK) and surviving proteins were assessed by Western blot analysis. SHP depressed the radiation-induced DNA double-strand break and enhanced the DNA repair capacity in NHA, which correlated with promotion of DNA-PK phosphorylation. In contrast, SHP enhanced radiosensitivity of C6 cells, the pre-treatment with SHP resulted in reduced numbers of γH2AX foci in irradiated C6 cells, and decreased the expression of DNA-PK and survivn(P<0.005). It significant effect on inhibition of C6 cell proliferation and induced C6 cells apoptosis in a time-depdendent manner than radiation alone (P<0.001). SHP showed a novel bidirectional function to improve the radioresistance of NHA and enhanced radiosensitivity of C6 cells. This implies that SHP can protect the NHA from radiant damage and enhanced the sensitivity of C6 cells to radiation, which could be attributed to the alteration of survivin DNA-PK in DNA repair processes

    Protective Effect of Flavonoids against Methylglyoxal-Induced Oxidative Stress in PC-12 Neuroblastoma Cells and Its Structure&ndash;Activity Relationships

    No full text
    Methylglyoxal-induced oxidative stress and cytotoxicity are the main factors causing neuronal death-related, diabetically induced memory impairment. Antioxidant and anti-apoptotic therapy are potential intervention strategies. In this study, 25 flavonoids with different substructures were assayed for protecting PC-12 cells from methylglyoxal-induced damage. A structure&ndash;activity relationship (SAR) analysis indicated that the absence of the double bond at C-2 and C-3, substitutions of the gallate group at the 3 position, the pyrogallol group at the B-ring, and the R configuration of the 3 position enhanced the protection of flavan-3-ols, and a hydroxyl substitution at the 4&prime; and meta-positions were important for the protection of flavonol. These SARs were further confirmed by molecular docking using the active site of the Keap1&ndash;Nrf2 complex as the receptor. The mechanistic study demonstrated that EGCG with the lowest EC50 protected the PC-12 cells from methylglyoxal-induced damage by reducing oxidative stress via the Nrf2/Keap1/HO-1 and Bcl-2/Bax signaling pathways. These results suggested that flavan-3-ols might be a potential dietary supplement for protection against diabetic encephalopathy

    Photonic Pigments of Polystyrene-<i>block</i>-Polyvinylpyrrolidone Bottlebrush Block Copolymers via Sustainable Organized Spontaneous Emulsification

    No full text
    Prior studies on photonic pigments of amphiphilic bottlebrush block copolymers (BBCPs) through an organized spontaneous emulsification (OSE) mechanism have been limited to using polyethylene glycol (PEG) as the hydrophilic side chains and toluene as the organic phase. Herein, a family of polystyrene-block-polyvinylpyrrolidone (PS-b-PVP) BBCPs are synthesized with PVP as the hydrophilic block. Biocompatible and sustainable anisole is employed for dissolving the obtained BBCPs followed by emulsification of the solutions in water. Subsequent evaporation of oil-in-water emulsion droplets triggers the OSE mechanism, producing thermodynamically stable water-in-oil-in-water (w/o/w) multiple emulsions with uniform and closely packed internal droplet arrays through the assembly of the BBCPs at the w/o interface. Upon solidification, the homogeneous porous structures are formed within the photonic microparticles that exhibit visible structural colors. The pore diameter is widely tunable (150∼314 nm) by changing the degree of polymerization of BBCP (69∼110), resulting in tunable colors across the whole visible spectrum. This work demonstrates useful knowledge that OSE can be generally used in the fabrication of ordered porous materials with tunable internal functional groups, not only for photonic applications, but also offers a potential platform for catalysis, sensing, separation, encapsulation, etc

    Mitophagy associated self-degradation of phosphorylated MAP4 guarantees the migration and proliferation responses of keratinocytes to hypoxia

    No full text
    Abstract Our previous study has announced that phosphorylated microtubule-associated protein 4 (p-MAP4) accelerated keratinocytes migration and proliferation under hypoxia through depolymerizing microtubules. However, p-MAP4 should exhibit inhibitory effects on wound healing, for it also impaired mitochondria. Thus, figuring out the outcome of p-MAP4 after it impaired mitochondria and how the outcome influenced wound healing were far-reaching significance. Herein, the results revealed that p-MAP4 might undergo self-degradation through autophagy in hypoxic keratinocytes. Next, p-MAP4 activated mitophagy which was unobstructed and was also the principal pathway of its self-degradation triggered by hypoxia. Moreover, both Bcl-2 homology 3 (BH3) and LC3 interacting region (LIR) domains had been verified in MAP4, and they endowed MAP4 with the capability to synchronously function as a mitophagy initiator and a mitophagy substrate receptor. And, mutating any one of them ruined hypoxia-induced self-degradation of p-MAP4, resulting in destroyed proliferation and migration responses of keratinocytes to hypoxia. Our findings unviewed that p-MAP4 experienced mitophagy-associated self-degradation through utilizing its BH3 and LIR domains under hypoxia. As a result, the mitophagy-associated self-degradation of p-MAP4 guaranteed the migration and proliferation responses of keratinocytes to hypoxia. Together, this research provided a bran-new pattern of proteins in regulating wound healing, and offered a new direction for intervening wound healing

    DIDS Reduces Ischemia/Reperfusion-Induced Myocardial Injury in Rats

    No full text
    Background/Aims: Anion channels such as chloride channel are known to participate in the regulation of a wide variety of cellular processes including development, differentiation, proliferation, apoptosis and regeneration. This study was designed to examine the effect of the non-selective anion channel blocker 4,4'-Diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS) on cardiac function and apoptosis using a rat model of ischemia/reperfusion (I/R). Methods: Fifty male SD rats were randomly divided into the following groups including sham, I/R and I/R+DIDS (7, 14 or 28 mg/kg). In DIDS group, rats received DIDS treatment (4 ml/kg/hr) at the beginning of reperfusion for 2 hrs using a programmed micro-pump. Cardiac function was evaluated including left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP) as well as positive and negative maximal derivatives of left ventricular pressure (± dP/dtmax). Myocardial infarct size was detected using the double staining with 2, 3, 5-triphenyl-2H-tetra-zolium chloride (TTC) and Evan's blue dye. DNA ladder, TUNEL assay, Bax and Bcl-2 protein levels were evaluated. Levels of ROS and Akt phosphorylation were detected. Results: I/R injury compromised cardiac function as manifested by reduced LVSP and ± dP/dtmax as well as pronounced apoptosis. I/R-induced cardiac anomalies were markedly ameliorated by DIDS. DIDS retarded I/R-induced myocardial infarct and apoptosis. In addition, DIDS ameliorated I/R-induced ROS production and Akt dephosphorylation in the heart. Conclusion: Taken together, our data revealed that DIDS may protect cardiomyocytes against I/R injury as evidenced by improved cardiac function, Bcl-2, Akt phosphorylation, and reduced myocardial apoptosis, Bax expression, ROS production and myocardial infarct size

    A Layered-Tunnel Intergrowth Structure for High-Performance Sodium-Ion Oxide Cathode

    No full text
    Delivery of high-energy density with long cycle life is facing a severe challenge in developing cathode materials for rechargeable sodium-ion batteries (SIBs). Here a composite Na 0.6 MnO 2 with layered-tunnel structure combining intergrowth morphology of nanoplates and nanorods for SIBs, which is clearly confirmed by micro scanning electron microscopy, high-resolution transmission electron microscopy as well as scanning transmission electron microscopy with atomic resolution is presented. Owing to the integrated advantages of P2 layered structure with high capacity and that of the tunnel structure with excellent cycling stability and superior rate performance, the composite electrode delivers a reversible discharge capacity of 198.2 mAh g -1 at 0.2C rate, leading to a high-energy density of 520.4 Wh kg -1 . This intergrowth integration engineering strategy may modulate the physical and chemical properties in oxide cathodes and provide new perspectives on the optimal design of high-energy density and high-stable materials for SIBs
    corecore