14 research outputs found

    What influences Metro station ridership in China? Insights from Nanjing

    No full text
    China is undertaking one of the most ambitious rail expansions in the world. This paper investigated the impacts of factors on ridership within Metro stations’ pedestrian catchment area (PCA) in Nanjing, China. Direct ridership model was developed to explain the ridership at 55 Metro stations using a Geographic Information System (GIS) and multiple regression analysis. Independent variables included factors measuring land use, external connectivity, intermodal connection, and station context. Six variables were found to be significantly associated with Metro station ridership at the 0.05 level: population, business/office floor area, CBD dummy variable, number of education buildings, entertainment venues and shop centers. Five variables were proved to be related to station ridership at the 0.01 significance level: employment, road length, feeder bus lines, bicycle park-and-ride (P&R) spaces, and transfer dummy variable. In particular, CBD dummy variable, the number of education buildings, entertainment venues and shop centers, and bicycle P&R spaces were found to be significantly connected to Metro station ridership in the present study. The results not only confirm some findings from previous studies but also show distinct differences regarding some variables specific to the Chinese context

    Analysis of Metro ridership at station level and station-to-station level in Nanjing: an approach based on direct demand models

    No full text
    A growing base of research adopts direct demand models to reveal associations between transit ridership and influence factors in recent years. This study is designed to investigate the factors affecting rail transit ridership at both station level and station-to-station level by adopting multiple regression model and multiplicative model respectively, specifically using an implemented Metro system in Nanjing, China, where Metro implementation is on the rise. Independent variables include factors measuring land-use mix, intermodal connection, station context, and travel impedance. Multiple regression model proves 11 variables are significantly associated with Metro ridership at station level: population, employment, business/office floor area, CBD dummy variable, number of major educational sites, entertainment venues and shopping centers, road length, feeder bus lines, bicycle park-and-ride (P&R) spaces, and transfer dummy variable. Results from multiplicative model indicate that factors influencing Metro station ridership may also influence Metro station-to-station ridership, varied by both trip ends (origin/destination) and time of day. In comparison with previous case studies, CBD dummy variable and bicycle P&R are statistically significant to explain Metro ridership in Nanjing. In addition, Metro travel impedance variables have significant influence on station-to-station ridership, representing the basic time-decay relationship in travel distribution. Potential implications of the model results include estimating Metro ridership at station level and station-to-station level by considering the significant variables, recognizing the necessity to establish a cooperative multi-modal transit system, and identifying opportunities for transit-oriented development

    Insights into Synergy of Copper and Acid Sites for Selective Catalytic Reduction of NO with Ammonia over Zeolite Catalysts

    No full text
    Herein, we report the function of copper sites in Cu-SSZ-13, Cu-ZSM-5 and Cu-Beta catalysts with the same Si/Al ratio (14) and Cu/Al ratio (0.4) on selective catalytic reduction of NO with NH3 (NH3-SCR) and reveal the relationship between active sites (Cu sites, acid sites) and catalytic activity. The results show that the amount of isolated Cu2+ ions in the catalysts directly determines the formation of strong Lewis acid sites and reaction intermediate NO3− ions, thus affecting the low-temperature SCR performance, while the amount of highly stable Cu+ ions and Brønsted acid sites is related to the high-temperature SCR performance of the catalysts. Consequently, it contains enough isolated Cu2+ ions, highly stable Cu+ ions and Brønsted acid sites, which endows Cu-SSZ-13 with excellent NH3-SCR activity

    Insights into Synergy of Copper and Acid Sites for Selective Catalytic Reduction of NO with Ammonia over Zeolite Catalysts

    No full text
    Herein, we report the function of copper sites in Cu-SSZ-13, Cu-ZSM-5 and Cu-Beta catalysts with the same Si/Al ratio (14) and Cu/Al ratio (0.4) on selective catalytic reduction of NO with NH3 (NH3-SCR) and reveal the relationship between active sites (Cu sites, acid sites) and catalytic activity. The results show that the amount of isolated Cu2+ ions in the catalysts directly determines the formation of strong Lewis acid sites and reaction intermediate NO3− ions, thus affecting the low-temperature SCR performance, while the amount of highly stable Cu+ ions and Brønsted acid sites is related to the high-temperature SCR performance of the catalysts. Consequently, it contains enough isolated Cu2+ ions, highly stable Cu+ ions and Brønsted acid sites, which endows Cu-SSZ-13 with excellent NH3-SCR activity

    IFN-α armed gE elicits superior immunogenicity compared to unmodified antigens and flagellin armed gE in mice

    No full text
    Herpes zoster (HZ) induces significant pain and discomfort, which can seriously affect the quality of life of patients. At present, there is no specific treatment for HZ, and the mosteffective HZ control is vaccination. The main obstacle to developing an effective HZ vaccine is poorly induced cellular immune response. In this study, the IFN-α–gE–Fc fusion protein induced higher levels of humoral and cellular immunity compared to the unengineered gE antigen and higher levels of cellular immunity compared to the flagellin–gE–Fc fusion protein in a murine model. Compared with the marketed recombinant herpes zoster vaccine (Shingrix), IFN-α–gE–Fc can replace current used MPL adjuvant. At the same time, the immunogenicity of the IFN-α–gE–Fc + AQ was not weaker than that of the marketed recombinant zoster vaccine. The novel fusion protein provides a candidate entity for the development of a safe and effective novel HZ vaccine

    Association between oral microbial dysbiosis and poor functional outcomes in stroke-associated pneumonia patients

    No full text
    Abstract Background Despite advances in our understanding of the critical role of the microbiota in stroke patients, the oral microbiome has rarely been reported to be associated with stroke-associated pneumonia (SAP). We sought to profile the oral microbial composition of SAP patients and to determine whether microbiome temporal instability and special taxa are associated with pneumonia progression and functional outcomes. Methods This is a prospective, observational, single-center cohort study that examined patients with acute ischemic stroke (AIS) who were admitted within 24 h of experiencing a stroke event. The patients were divided into three groups based on the occurrence of pneumonia and the use of mechanical ventilation: nonpneumonia group, SAP group, and ventilator-associated pneumonia (VAP) group. We collected oral swabs at different time points post-admission and analyzed the microbiota using 16 S rRNA high-throughput sequencing. The microbiota was then compared among the three groups. Results In total, 104 nonpneumonia, 50 SAP and 10 VAP patients were included in the analysis. We found that SAP and VAP patients exhibited significant dynamic differences in the diversity and composition of the oral microbiota and that the magnitude of this dysbiosis and instability increased during hospitalization. Then, by controlling the potential effect of all latent confounding variables, we assessed the changes associated with pneumonia after stroke and explored patients with a lower abundance of Streptococcus were more likely to suffer from SAP. The logistic regression analysis revealed that an increase in specific taxa in the phylum Actinobacteriota was linked to a higher risk of poor outcomes. A model for SAP patients based on oral microbiota could accurately predict 30-day clinical outcomes after stroke onset. Conclusions We concluded that specific oral microbiota signatures could be used to predict illness development and clinical outcomes in SAP patients. We proposed the potential of the oral microbiota as a non-invasive diagnostic biomarker in the clinical management of SAP patients. Clinical Trial registration NCT04688138. Registered 29/12/2020, https://clinicaltrials.gov/ct2/show/NCT04688138
    corecore