9 research outputs found

    Transcriptome analysis of <em>Litopenaeus vannamei</em> during the early stage of limb regeneration process

    Get PDF
    Regeneration is a process in which organisms regrow new tissues or organs at the injury site, which has attracted the attention of many scientists and nonscientists. However, the underlying molecular mechanisms of regeneration after autotomy are largely unknown. In this study, we conducted RNA-seq sequencing on regenerated limb bud tissues of *Litopenaeus vannamei* at 0 hours post autotomy (0 hpa), 12 hours post autotomy (12 hpa), and 24 hours post autotomy (24 hpa). A total of 2,192 differentially expressed genes related to energy metabolism, transcription and translation, and epidermis development were identified between 0 hpa and 12 hpa, such as triosephosphate isomerase A, triosephosphate isomerase B, and zinc finger protein 367 that is upregulated in 12 hpa. Between 12 hpa and 24 hpa, 1,447 differentially expressed genes were identified that were related to cuticle development and energy metabolism, such as cuticle protein 6, which is upregulated in 24 hpa, and triosephosphate isomerase is downregulated in 24 hpa. The results indicated that energy metabolism, transcription and translation, epidermal formation, and chitin metabolism processes are involved during the early stage of limb regeneration. This study provides basic knowledge for investigating the molecular mechanisms associated with limb regeneration in crustaceans at the early regeneration stage

    Transcriptomic variation of hepatopancreas reveals the energy metabolism and biological processes associated with molting in Chinese mitten crab, Eriocheir sinensis

    Get PDF
    Molting is a critical developmental process for crustaceans, yet the underlying molecular mechanism is unknown. In this study, we used RNA-Seq to investigate transcriptomic profiles of the hepatopancreas and identified differentially expressed genes at four molting stages of Chinese mitten crab (Eriocheir sinensis). A total of 97,398 transcripts were assembled, with 31,900 transcripts annotated. Transcriptomic comparison revealed 1,189 genes differentially expressed amongst different molting stages. We observed a pattern associated with energy metabolism and physiological responses during a molting cycle. In specific, differentially expressed genes enriched in postmolt were linked to energy consumption whereas genes enriched in intermolt were related to carbohydrates, lipids metabolic and biosynthetic processes. In premolt, a preparation stage for upcoming molting and energy consumption, highly expressed genes were enriched in response to steroid hormone stimulus and immune system development. The expression profiles of twelve functional genes detected via RNA-Seq were corroborated through real-time RT-PCR assay. Together, our results, including assembled transcriptomes, annotated functional elements and enriched differentially expressed genes amongst different molting stages, provide novel insights into the functions of the hepatopancreas in energy metabolism and biological processes pertaining to molting in crustaceans

    Tissue expression profiles unveil the gene interaction of hepatopancreas, eyestalk, and ovary in the precocious female Chinese mitten crab, Eriocheir sinensis

    No full text
    Abstract Background Sexual precocity is a common biological phenomenon in animal species. A large number of precocity individuals were identified in Chinese mitten crab Eriocheir sinensis, which caused huge economic loss annually. However, the underlying genetic basis of precocity in E. sinensis remains unclear to date. Results In this study, morphological and histological observation and comparative transcriptome analysis were conducted among different stages of precocious one-year-old and normal two-year-old sexually mature E. sinensis. The expression profiles of the ovary, hepatopancreas, and eyestalk tissues were presented and compared. Genes associated with lipid metabolic process, lipid transport, vitelline membrane formation, vitelline synthesis, and neuropeptide hormone-related genes were upregulated in the ovary, hepatopancreas, and eyestalk of precocious E. sinensis. Our results indicated that the eyestalk was involved in the neuroendocrine system providing neuropeptide hormones that may induce vitellogenesis in the hepatopancreas and further stimulate ovary development. The hepatopancreas is a site for energy storage and vitellogenin synthesis, and it may assist oogenesis through lipid transport in precocious E. sinensis. Conclusion We provided not only an effective and convenient phenotype measurement method for the identification of potential precocious E. sinensis detection but also valuable genetic resources and novel insights into the molecular mechanism of precocity in E. sinensis. The genetic basis of precocity in E. sinensis is an integrated gene regulatory network of eyestalk, hepatopancreas, and ovary tissues

    Molecular characteristic of activin receptor IIB and its functions in growth and nutrient regulation in Eriocheir sinensis

    No full text
    Activin receptor IIB (ActRIIB) is a serine/threonine-kinase receptor binding with transforming growth factor-β (TGF-β) superfamily ligands to participate in the regulation of muscle mass in vertebrates. However, its structure and function in crustaceans remain unknown. In this study, the ActRIIB gene in Eriocheir sinensis (Es-ActRIIB) was cloned and obtained with a 1,683 bp open reading frame, which contains the characteristic domains of TGF-β type II receptor superfamily, encoding 560 amino acids. The mRNA expression of Es-ActRIIB was the highest in hepatopancreas and the lowest in muscle at each molting stage. After injection of Es-ActRIIB double-stranded RNA during one molting cycle, the RNA interference (RNAi) group showed higher weight gain rate, higher specific growth rate, and lower hepatopancreas index compared with the control group. Meanwhile, the RNAi group displayed a significantly increased content of hydrolytic amino acid in both hepatopancreas and muscle. The RNAi group also displayed slightly higher contents of saturated fatty acid and monounsaturated fatty acid but significantly decreased levels of polyunsaturated fatty acid compared with the control group. After RNAi on Es-ActRIIB, the mRNA expressions of five ActRIIB signaling pathway genes showed that ActRI and forkhead box O (FoxO) were downregulated in hepatopancreas and muscle, but no significant expression differences were found in small mother against decapentaplegic (SMAD) 3, SMAD4 and mammalian target of rapamycin. The mRNA expression s of three lipid metabolism-related genes (carnitine palmitoyltransferase 1β (CPT1β), fatty acid synthase, and fatty acid elongation) were significantly downregulated in both hepatopancreas and muscle with the exception of CPT1β in muscles. These results indicate that ActRIIB is a functionally conservative negative regulator in growth mass, and protein and lipid metabolism could be affected by inhibiting ActRIIB signaling in crustacean

    Evolutionary relationship of three mitten crabs (Eriocheir sp) revealed by mitogenome and 5S ribosomal DNA analysis

    No full text
    To reveal the evolutionary relationship of three mitten crabs (Eriocheir sinensis, E. hepuensis, and E. japonica), complete mitogenomes and nuclear 5S rDNA sequences were analyzed. Sequencing revealed that the mitogenomes analyzed shared conserved organization of the coding and non-coding regions but genetic variation was identified. Among the three mitten crabs distinct tandem repeats were identified in the mitochondrial D-loop region. The 5S gene (5S rDNA) sequence was highly conserved across the three species, whereas non-transcribed spacer (NTS) region exhibit high levels of variation including insertions, deletions and point mutations. Cluster analysis suggested that the three mitten crabs had their own independent 5S rDNA sequence variation and evolutionary pattern. Both mitogenome and 5S rDNA sequence analysis revealed significant genetic variation across the mitten crabs species. Phylogenetic analysis using mitogenome and 5S rDNA sequences demonstrated that E. japonica was relatively more distant from E. sinensis and E. hepuensis. This study extended our previous knowledge and confirmed that the three mitten crabs are likely to be genetically differentiated species. In addition, our study also provided insights into the conservation of pure natural resources of E. sinensis, an important aquaculture species
    corecore