1,836 research outputs found

    Ethanol extract of Hedyotis diffusa willd. induction of apoptosis via PI3K/Akt and XIAP pathways in human leukemic THP-1 cells

    Get PDF
    Hedyotis diffusa (H. diffusa) Willd. is known to induce apoptosis in cancer cells. However, the molecular mechanism of its anti-cancer activity has not been fully elucidated. In this study, we found that the ethanol extract of H. diffusa Willd. (EEHDW) reduced cell viability and induced apoptosis in a dose- and time-dependent manner in human leukemic THP-1 cells. The induction of apoptosis was also accompanied by the down regulation of PI3K/Akt and the inhibitor of apoptosis protein (IAP) family proteins. Moreover, we observed that EEHDW treatment resulted in activation of caspase-3, which may partly explain the anti-cancer activity of EEHDW.Key words: Hedyotis diffusa Willd., THP-1, apoptosis, caspase

    Field efficacy and safety of an oral formulation of the novel combination anthelmintic, derquantel-abamectin, in sheep in New Zealand

    Get PDF
    AIM: To evaluate the efficacy and safety of the novel anthelmintic combination, derquantel-abamectin, against gastrointestinal nematode populations in sheep, under field-use conditions

    Effects of oxidized low density lipoprotein, lipid mediators and statins on vascular cell interactions

    Get PDF
    The integrin heterodimer CD11b/CD18 (alpha M beta 2, Mac-1, CR3) expressed on monocytes or polymorphonuclear leukocytes (PMN) is a receptor for iC3b, fibrinogen, heparin, and for intercellular adhesion molecule (ICAM)-1 on endothelium, crucially contributing to vascular cell interactions in inflammation and atherosclerosis. In this report, we summarize our findings on the effects of lipid mediators and lipid-lowering drugs. Exposure of endothelial cells to oxidized low density lipoprotein (oxLDL) induces upregulation of ICAM-1 and increases adhesion of monocytic cells expressing Mac-1. Inhibition experiments show that monocytes use distinct ligands, i.e. ICAM-1 and heparan sulfate proteoglycans for adhesion to oxLDL-treated endothelium. An albumin-transferable oxLDL activity is inhibited by the antioxidant pyrrolidine dithiocarbamate (PDTC), while 8-epi-prostaglandin F2 alpha (8-epi-PGF2 alpha) or lysophosphatidylcholine had no effect, implicating yet unidentified radicals. Sequential adhesive! and signaling events lead to the firm adhesion of rolling PMN on activated and adherent platelets, which may occupy areas of endothelial denudation. Shear resistant arrest of PMN on thrombin-stimulated platelets in flow conditions requires distinct regions of Mac-1, involving its interactions with fibrinogen bound to platelet alpha llb beta 3, and with other platelet ligands. Both arrest and adhesion strengthening under flow are stimulated by platelet-activating factor and leukotriene B4, but not by the chemokine receptor CXCR2. We tested whether Mac-1-dependent monocyte adhesiveness is affected by inhibitors of hydroxy-methylglutaryl-Coenzyme A reductase (statins) which improve morbidity and survival of patients with coronary heart disease. As compared to controls, adhesion of isolated monocytes to endothelium ex vivo was increased in patients with hypercholesterolemia. Treatment with statins decreased total and low density lipoprotein (LDL) cholesterol plasma levels, surface expression of Mac-1, and resulted in a dramatic reduction of Mac,mediated monocyte adhesion to endothelium. The inhibition of monocyte adhesion was reversed by mevalonate but not LDL in vitro,indicating that isoprenoid precursors are crucial for adhesiveness of Mac-1. Such effects may crucially contribute to the clinical benefit of statins, independent of cholesterol-lowering, and may represent a paradigm for novel, anti-inflammatory mechanisms of action by this class of drugs

    Dual effects of phytoestrogens result in u-shaped dose-response curves.

    Get PDF
    Endocrine disruptors can affect the endocrine system without directly interacting with receptors, for example, by interfering with the synthesis or metabolism of steroid hormones. The aromatase that converts testosterone to 17beta-estradiol is a possible target. In this paper we describe an assay that simultaneously detects aromatase inhibition and estrogenicity. The principle is similar to that of other MCF-7 estrogenicity assays, but with a fixed amount of testosterone added. The endogenous aromatase activity in MCF-7 cells converts some of the testosterone to 17beta-estradiol, which is assayed by quantifying differences in the expression level of the estrogen-induced pS2 mRNA. Potential aromatase inhibitors can be identified by a dose-dependent reduction in the pS2 mRNA expression level after exposure to testosterone and the test compound. Using this assay, we have investigated several compounds, including synthetic chemicals and phytoestrogens, for aromatase inhibition. The phytoestrogens, except genistein, were aromatase inhibitors at low concentrations (< 1 micro M) but estrogenic at higher concentrations (greater than or equal to 1 micro M), resulting in U-shaped dose-response curves. None of the tested synthetic chemicals were aromatase inhibitors. The low-dose aromatase inhibition distinguished phytoestrogens from other estrogenic compounds and may partly explain reports about antiestrogenic properties of phytoestrogens. Aromatase inhibition may play an important role in the protective effects of phytoestrogens against breast cancer

    Discrete and Effortful Imagined Movements Do Not Specifically Activate the Autonomic Nervous System

    Get PDF
    International audienceBACKGROUND: The autonomic nervous system (ANS) is activated in parallel with the motor system during cyclical and effortful imagined actions. However, it is not clear whether the ANS is activated during motor imagery of discrete movements and whether this activation is specific to the movement being imagined. Here, we explored these topics by studying the baroreflex control of the cardiovascular system. METHODOLOGY/PRINCIPAL FINDINGS: Arterial pressure and heart rate were recorded in ten subjects who executed or imagined trunk or leg movements against gravity. Trunk and leg movements result in different physiological reactions (orthostatic hypotension phenomenon) when they are executed. Interestingly, ANS activation significantly, but similarly, increased during imagined trunk and leg movements. Furthermore, we did not observe any physiological modulation during a control mental-arithmetic task or during motor imagery of effortless movements (horizontal wrist displacements). CONCLUSIONS/SIGNIFICANCE: We concluded that ANS activation during motor imagery is general and not specific and physiologically prepares the organism for the upcoming effortful action

    Synthesis and characterisation of lamellar ZnS nanosheets containing intercalated diamines

    Get PDF
    A solvothermal method has been used to preparehybrid inorganic-organic composites with a lamellar structure in which layers of wurtzite ZnS are separated by intercalated diamine molecules. A hybrid composite prepared with diethylenetriamine has been isolated and characterisedand its structure and properties compared with those of the composite prepared using ethylenediamine. Comparative structural and morphological studies of the two lamellar hybrid composites are described on the basis of powder XRD, electron and scanning probe microscopies and thermal analysis of the materials

    The effect of Fucus vesiculosus, an edible brown seaweed, upon menstrual cycle length and hormonal status in three pre-menopausal women: a case report

    Get PDF
    BACKGROUND: Rates of estrogen-dependent cancers are among the highest in Western countries and lower in the East. These variations may be attributable to differences in dietary exposures such as higher seaweed consumption among Asian populations. The edible brown kelp, Fucus vesiculosus (bladderwrack), as well as other brown kelp species, lower plasma cholesterol levels. Since cholesterol is a precursor to sex hormone biosynthesis, kelp consumption may alter circulating sex hormone levels and menstrual cycling patterns. In particular, dietary kelp may be beneficial to women with or at high risk for estrogen-dependent diseases. To test this, bladderwrack was administered to three pre-menopausal women with abnormal menstrual cycling patterns and/or menstrual-related disease histories. CASE PRESENTATION: Intake of bladderwrack was associated with significant increases in menstrual cycle lengths, ranging from an increase of 5.5 to 14 days. In addition, hormone measurements ascertained for one woman revealed significant anti-estrogenic and progestagenic effects following kelp administration. Mean baseline 17β-estradiol levels were reduced from 626 ± 91 to 164 ± 30 pg/ml (P = 0.04) following 700 mg/d, which decreased further to 92.5.0 ± 3.5pg/ml (P = 0.03) with the1.4 g/d dose. Mean baseline progesterone levels rose from 0.58 ± 0.14 to 8.4 ± 2.6 ng/ml with the 700 mg/d dose (P = 0.1), which increased further to 16.8 ± 0.7 ng/ml with the 1.4 g/d dose (P = 0.002). CONCLUSIONS: These pilot data suggest that dietary bladderwrack may prolong the length of the menstrual cycle and exert anti-estrogenic effects in pre-menopausal women. Further, these studies also suggest that seaweed may be another important dietary component apart from soy that is responsible for the reduced risk of estrogen-related cancers observed in Japanese populations. However, these studies will need to be performed in well-controlled clinical trials to confirm these preliminary findings

    Detection of regulator genes and eQTLs in gene networks

    Full text link
    Genetic differences between individuals associated to quantitative phenotypic traits, including disease states, are usually found in non-coding genomic regions. These genetic variants are often also associated to differences in expression levels of nearby genes (they are "expression quantitative trait loci" or eQTLs for short) and presumably play a gene regulatory role, affecting the status of molecular networks of interacting genes, proteins and metabolites. Computational systems biology approaches to reconstruct causal gene networks from large-scale omics data have therefore become essential to understand the structure of networks controlled by eQTLs together with other regulatory genes, and to generate detailed hypotheses about the molecular mechanisms that lead from genotype to phenotype. Here we review the main analytical methods and softwares to identify eQTLs and their associated genes, to reconstruct co-expression networks and modules, to reconstruct causal Bayesian gene and module networks, and to validate predicted networks in silico.Comment: minor revision with typos corrected; review article; 24 pages, 2 figure

    Enhanced Discrimination of Malignant from Benign Pancreatic Disease by Measuring the CA 19-9 Antigen on Specific Protein Carriers

    Get PDF
    The CA 19-9 assay detects a carbohydrate antigen on multiple protein carriers, some of which may be preferential carriers of the antigen in cancer. We tested the hypothesis that the measurement of the CA 19-9 antigen on individual proteins could improve performance over the standard CA 19-9 assay. We used antibody arrays to measure the levels of the CA 19-9 antigen on multiple proteins in serum or plasma samples from patients with pancreatic adenocarcinoma or pancreatitis. Sample sets from three different institutions were examined, comprising 531 individual samples. The measurement of the CA 19-9 antigen on any individual protein did not improve upon the performance of the standard CA 19-9 assay (82% sensitivity at 75% specificity for early-stage cancer), owing to diversity among patients in their CA 19-9 protein carriers. However, a subset of cancer patients with no elevation in the standard CA 19-9 assay showed elevations of the CA 19-9 antigen specifically on the proteins MUC5AC or MUC16 in all sample sets. By combining measurements of the standard CA 19-9 assay with detection of CA 19-9 on MUC5AC and MUC16, the sensitivity of cancer detection was improved relative to CA 19-9 alone in each sample set, achieving 67–80% sensitivity at 98% specificity. This finding demonstrates the value of measuring glycans on specific proteins for improving biomarker performance. Diagnostic tests with improved sensitivity for detecting pancreatic cancer could have important applications for improving the treatment and management of patients suffering from this disease

    Ectopic Catalase Expression in Mitochondria by Adeno-Associated Virus Enhances Exercise Performance in Mice

    Get PDF
    Oxidative stress is thought to compromise muscle contractility. However, administration of generic antioxidants has failed to convincingly improve performance during exhaustive exercise. One possible explanation may relate to the inability of the supplemented antioxidants to effectively eliminate excessive free radicals at the site of generation. Here, we tested whether delivering catalase to the mitochondria, a site of free radical production in contracting muscle, could improve treadmill performance in C57Bl/6 mice. Recombinant adeno-associated virus serotype-9 (AV.RSV.MCAT) was generated to express a mitochondria-targeted catalase gene. AV.RSV.MCAT was delivered to newborn C57Bl/6 mouse circulation at the dose of 1012 vector genome particles per mouse. Three months later, we observed a ∼2 to 10-fold increase of catalase protein and activity in skeletal muscle and the heart. Subcellular fractionation western blot and double immunofluorescence staining confirmed ectopic catalase expression in the mitochondria. Compared with untreated control mice, absolute running distance and body weight normalized running distance were significantly improved in AV.RSV.MCAT infected mice during exhaustive treadmill running. Interestingly, ex vivo contractility of the extensor digitorum longus muscle was not altered. Taken together, we have demonstrated that forced catalase expression in the mitochondria enhances exercise performance. Our result provides a framework for further elucidating the underlying mechanism. It also raises the hope of applying similar strategies to remove excessive, pathogenic free radicals in certain muscle diseases (such as Duchenne muscular dystrophy) and ameliorate muscle disease
    corecore