151 research outputs found

    A Two-stage Multiband Radar Sensing Scheme via Stochastic Particle-Based Variational Bayesian Inference

    Full text link
    Multiband fusion is an important technique for radar sensing, which jointly utilizes measurements from multiple non-contiguous frequency bands to improve the sensing performance. In the multi-band radar sensing signal model, there are many local optimums in the associated likelihood function due to the existence of high frequency component, which makes it difficult to obtain high-accuracy parameter estimation. To cope with this challenge, we divide the radar target parameter estimation into two stages equipped with different but equivalent signal models, where the first-stage coarse estimation is used to narrow down the search range for the next stage, and the second-stage refined estimation is based on the Bayesian approach to avoid the convergence to a bad local optimum of the likelihood function. Specifically, in the coarse estimation stage, we employ a weighted root MUSIC algorithm to achieve initial estimation. Then, we apply the block stochastic successive convex approximation (SSCA) approach to derive a novel stochastic particle-based variational Bayesian inference (SPVBI) algorithm for the Bayesian estimation of the radar target parameters in the refined stage. Unlike the conventional particle-based VBI (PVBI) in which only the probability of each particle is optimized and the per-iteration computational complexity increases exponentially with the number of particles, the proposed SPVBI optimizes both the position and probability of each particle, and it adopts the block SSCA to significantly improve the sampling efficiency by averaging over iterations. As such, it is shown that the proposed SPVBI can achieve a better performance than the conventional PVBI with a much smaller number of particles and per-iteration complexity. Finally, extensive simulations verify the advantage of the proposed algorithm over various baseline algorithms

    Leaking Arbitrarily Many Secrets: Any-out-of-Many Proofs and Applications to RingCT Protocols

    Get PDF
    Ring Confidential Transaction (RingCT) protocol is an effective cryptographic component for preserving the privacy of cryptocurrencies. However, existing RingCT protocols are instantiated from one-out-of-many proofs with only one secret, leading to low efficiency and weak anonymity when handling transactions with multiple inputs. Additionally, current partial knowledge proofs with multiple secrets are neither secure nor efficient to be applied in a RingCT protocol. In this paper, we propose a novel \emph{any-out-of-many proof}, a logarithmic-sized zero-knowledge proof scheme for showing the knowledge of arbitrarily many secrets out of a public list. Unlike other partial knowledge proofs that have to reveal the number of secrets [ACF21], our approach proves the knowledge of multiple secrets without leaking the exact number of them. Furthermore, we improve the efficiency of our method with a generic inner-product transformation to adopt the Bulletproofs compression [BBB+18], which reduces the proof size to 2log2(N) ⁣+ ⁣92 \lceil \log_2(N) \rceil \! + \! 9. Based on our proposed proof scheme, we further construct a compact RingCT protocol for privacy cryptocurrencies, which can provide a logarithmic-sized communication complexity for transactions with multiple inputs. More importantly, as the only known RingCT protocol instantiated from the partial knowledge proofs, our protocol can achieve the highest anonymity level compared with other approaches like Omniring [LRR+19]. For other applications, such as multiple ring signatures, our protocol can also be applied with some modifications. We believe our techniques are also applicable in other privacy-preserving scenarios, such as multiple ring signatures and coin-mixing in the blockchain

    Domain Wall Enabled Hysteresis-Free Steep Slope Switching in MoS2_2 Transistors

    Get PDF
    The device concept of operating ferroelectric field effect transistors (FETs) in the negative capacitance (NC) regime offers a promising route for achieving energy-efficient logic applications that can outperform the conventional CMOS technology, while the viable mechanisms for stabilizing the NC mode remain a central topic of debate. In this work, we report hysteresis-free steep slope switching in few-layer and bilayer MoS2_2 transistors back-gated by single layer polycrystalline PbZr0.35_{0.35}Ti0.65_{0.65}O3_3 films. The devices exhibit current on/off ratios up to 8×\times106^6 within an ultra-low gate voltage window of Vg_g = ±\pm0.5 V and subthreshold swing as low as 9.7 mV/decade at room temperature, transcending the 60 mV/decade Boltzmann limit. Unlike previous studies, the quasi-static NC mode is realized in a ferroelectric without involving an additional dielectric layer. Theoretical modeling reveals the dominant role of the metastable polar states within ferroelectric domain walls in enabling the NC mode in the MoS2_2 transistors. Our findings shed light into a new mechanism for NC operation, providing a simple yet effective material strategy for developing high speed, low-power 2D nanoelectronics.Comment: 15 pages, 5 figure

    Dynamics of competing ideas in complex social systems

    Full text link
    Individuals accepting an idea may intentionally or unintentionally impose influences in a certain neighborhood area, making other individuals within the area less likely or even impossible to accept other competing ideas. Depending on whether such influences strictly prohibit neighborhood individuals from accepting other ideas or not, we classify them into exclusive and non-exclusive influences, respectively. Our study reveals for the first time the rich and complex dynamics of two competing ideas with neighborhood influences in scale-free social networks: depending on whether they have exclusive or non-exclusive influences, the final state varies from multiple coexistence to founder control to exclusion, with different sizes of population accepting each of the ideas respectively. Such results provide insights helpful for better understanding the spread (and the control of spread) of ideas in human society.Comment: 23 pages, 13 figures, accepted for publication in New Journal of Physic

    Simulation of Contrast Agent Transport in Arteries with Multilayer Arterial Wall: Impact of Arterial Transmural Transport on the Bolus Delay and Dispersion

    Get PDF
    One assumption of DSC-MRI is that the injected contrast agent is kept totally intravascular and the arterial wall is impermeable to contrast agent. The assumption is unreal for such small contrast agent as Gd-DTPA can leak into the arterial wall. To investigate whether the unreal assumption is valid for the estimation of the delay and dispersion of the contrast agent bolus, we simulated flow and Gd-DTPA transport in a model with multilayer arterial wall and analyzed the bolus delay and dispersion qualified by mean vascular transit time (MVTT) and the variance of the vascular transport function. Factors that may affect Gd-DTPA transport hence the delay and dispersion were further investigated, such as integrity of endothelium and disturbed flow. The results revealed that arterial transmural transport would slightly affect MVTT and moderately increase the variance. In addition, although the integrity of endothelium can significantly affect the accumulation of contrast agent in the arterial wall, it had small effects on the bolus delay and dispersion. However, the disturbed flow would significantly increase both MVTT and the variance. In conclusion, arterial transmural transport may have a small effect on the bolus delay and dispersion when compared to the flow pattern in the artery

    Global, Regional, and National Change Patterns in the Incidence of Low Back Pain From 1990 to 2019 and Its Predicted Level in the Next Decade

    Get PDF
    Objectives: To analyze and describe the spatiotemporal trends of Low back pain (LBP) burdens from 1990 to 2019 and anticipate the following decade’s incidence.Methods: Using data from the Global Burden of Disease (GBD) 2019 Study, we described net drifts, local drifts, age effects, and period cohort effects in incidence and forecasted incidence rates and cases by sex from 2020 to 2029 using the Nordpred R package.Results: LBP remained the leading cause of the musculoskeletal disease burden globally and across all socio-demographic index (SDI) regions. China is the top country. For recent periods, high-SDI countries faced unfavorable or worsening risks. The relative risk of incidence showed improving trends over time and in successively younger birth cohorts amongst low-middle-, middle- and high-middle-SDI countries. Additionally, the age-standardized incidence rates (ASIR) of LBP in both sexes globally showed a decreasing trend, but the incident cases would increase from 223 to 253 million overall in the next decade.Conclusion: As the population ages, incident cases will rise but ASIR will fall. To minimise LBP, public awareness and disease prevention and control are needed

    A Survey on Fundamental Limits of Integrated Sensing and Communication

    Get PDF
    The integrated sensing and communication (ISAC), in which the sensing and communication share the same frequency band and hardware, has emerged as a key technology in future wireless systems due to two main reasons. First, many important application scenarios in fifth generation (5G) and beyond, such as autonomous vehicles, Wi-Fi sensing and extended reality, requires both high-performance sensing and wireless communications. Second, with millimeter wave and massive multiple-input multiple-output (MIMO) technologies widely employed in 5G and beyond, the future communication signals tend to have high-resolution in both time and angular domain, opening up the possibility for ISAC. As such, ISAC has attracted tremendous research interest and attentions in both academia and industry. Early works on ISAC have been focused on the design, analysis and optimization of practical ISAC technologies for various ISAC systems. While this line of works are necessary, it is equally important to study the fundamental limits of ISAC in order to understand the gap between the current state-of-the-art technologies and the performance limits, and provide useful insights and guidance for the development of better ISAC technologies that can approach the performance limits. In this paper, we aim to provide a comprehensive survey for the current research progress on the fundamental limits of ISAC. Particularly, we first propose a systematic classification method for both traditional radio sensing (such as radar sensing and wireless localization) and ISAC so that they can be naturally incorporated into a unified framework. Then we summarize the major performance metrics and bounds used in sensing, communications and ISAC, respectively. After that, we present the current research progresses on fundamental limits of each class of the traditional sensing and ISAC systems. Finally, the open problems and future research directions are discussed
    corecore