151 research outputs found
A Two-stage Multiband Radar Sensing Scheme via Stochastic Particle-Based Variational Bayesian Inference
Multiband fusion is an important technique for radar sensing, which jointly
utilizes measurements from multiple non-contiguous frequency bands to improve
the sensing performance. In the multi-band radar sensing signal model, there
are many local optimums in the associated likelihood function due to the
existence of high frequency component, which makes it difficult to obtain
high-accuracy parameter estimation. To cope with this challenge, we divide the
radar target parameter estimation into two stages equipped with different but
equivalent signal models, where the first-stage coarse estimation is used to
narrow down the search range for the next stage, and the second-stage refined
estimation is based on the Bayesian approach to avoid the convergence to a bad
local optimum of the likelihood function. Specifically, in the coarse
estimation stage, we employ a weighted root MUSIC algorithm to achieve initial
estimation. Then, we apply the block stochastic successive convex approximation
(SSCA) approach to derive a novel stochastic particle-based variational
Bayesian inference (SPVBI) algorithm for the Bayesian estimation of the radar
target parameters in the refined stage. Unlike the conventional particle-based
VBI (PVBI) in which only the probability of each particle is optimized and the
per-iteration computational complexity increases exponentially with the number
of particles, the proposed SPVBI optimizes both the position and probability of
each particle, and it adopts the block SSCA to significantly improve the
sampling efficiency by averaging over iterations. As such, it is shown that the
proposed SPVBI can achieve a better performance than the conventional PVBI with
a much smaller number of particles and per-iteration complexity. Finally,
extensive simulations verify the advantage of the proposed algorithm over
various baseline algorithms
Leaking Arbitrarily Many Secrets: Any-out-of-Many Proofs and Applications to RingCT Protocols
Ring Confidential Transaction (RingCT) protocol is an effective cryptographic component for preserving the privacy of cryptocurrencies. However, existing RingCT protocols are instantiated from one-out-of-many proofs with only one secret, leading to low efficiency and weak anonymity when handling transactions with multiple inputs. Additionally, current partial knowledge proofs with multiple secrets are neither secure nor efficient to be applied in a RingCT protocol.
In this paper, we propose a novel \emph{any-out-of-many proof}, a logarithmic-sized zero-knowledge proof scheme for showing the knowledge of arbitrarily many secrets out of a public list. Unlike other partial knowledge proofs that have to reveal the number of secrets [ACF21], our approach proves the knowledge of multiple secrets without leaking the exact number of them. Furthermore, we improve the efficiency of our method with a generic inner-product transformation to adopt the Bulletproofs compression [BBB+18], which reduces the proof size to .
Based on our proposed proof scheme, we further construct a compact RingCT protocol for privacy cryptocurrencies, which can provide a logarithmic-sized communication complexity for transactions with multiple inputs. More importantly, as the only known RingCT protocol instantiated from the partial knowledge proofs, our protocol can achieve the highest anonymity level compared with other approaches like Omniring [LRR+19]. For other applications, such as multiple ring signatures, our protocol can also be applied with some modifications. We believe our techniques are also applicable in other privacy-preserving scenarios, such as multiple ring signatures and coin-mixing in the blockchain
Domain Wall Enabled Hysteresis-Free Steep Slope Switching in MoS Transistors
The device concept of operating ferroelectric field effect transistors (FETs)
in the negative capacitance (NC) regime offers a promising route for achieving
energy-efficient logic applications that can outperform the conventional CMOS
technology, while the viable mechanisms for stabilizing the NC mode remain a
central topic of debate. In this work, we report hysteresis-free steep slope
switching in few-layer and bilayer MoS transistors back-gated by single
layer polycrystalline PbZrTiO films. The devices exhibit
current on/off ratios up to 810 within an ultra-low gate voltage
window of V = 0.5 V and subthreshold swing as low as 9.7 mV/decade at
room temperature, transcending the 60 mV/decade Boltzmann limit. Unlike
previous studies, the quasi-static NC mode is realized in a ferroelectric
without involving an additional dielectric layer. Theoretical modeling reveals
the dominant role of the metastable polar states within ferroelectric domain
walls in enabling the NC mode in the MoS transistors. Our findings shed
light into a new mechanism for NC operation, providing a simple yet effective
material strategy for developing high speed, low-power 2D nanoelectronics.Comment: 15 pages, 5 figure
Dynamics of competing ideas in complex social systems
Individuals accepting an idea may intentionally or unintentionally impose
influences in a certain neighborhood area, making other individuals within the
area less likely or even impossible to accept other competing ideas. Depending
on whether such influences strictly prohibit neighborhood individuals from
accepting other ideas or not, we classify them into exclusive and non-exclusive
influences, respectively. Our study reveals for the first time the rich and
complex dynamics of two competing ideas with neighborhood influences in
scale-free social networks: depending on whether they have exclusive or
non-exclusive influences, the final state varies from multiple coexistence to
founder control to exclusion, with different sizes of population accepting each
of the ideas respectively. Such results provide insights helpful for better
understanding the spread (and the control of spread) of ideas in human society.Comment: 23 pages, 13 figures, accepted for publication in New Journal of
Physic
Simulation of Contrast Agent Transport in Arteries with Multilayer Arterial Wall: Impact of Arterial Transmural Transport on the Bolus Delay and Dispersion
One assumption of DSC-MRI is that the injected contrast agent is kept totally intravascular and the arterial wall is impermeable to contrast agent. The assumption is unreal for such small contrast agent as Gd-DTPA can leak into the arterial wall. To investigate whether the unreal assumption is valid for the estimation of the delay and dispersion of the contrast agent bolus, we simulated flow and Gd-DTPA transport in a model with multilayer arterial wall and analyzed the bolus delay and dispersion qualified by mean vascular transit time (MVTT) and the variance of the vascular transport function. Factors that may affect Gd-DTPA transport hence the delay and dispersion were further investigated, such as integrity of endothelium and disturbed flow. The results revealed that arterial transmural transport would slightly affect MVTT and moderately increase the variance. In addition, although the integrity of endothelium can significantly affect the accumulation of contrast agent in the arterial wall, it had small effects on the bolus delay and dispersion. However, the disturbed flow would significantly increase both MVTT and the variance. In conclusion, arterial transmural transport may have a small effect on the bolus delay and dispersion when compared to the flow pattern in the artery
Global, Regional, and National Change Patterns in the Incidence of Low Back Pain From 1990 to 2019 and Its Predicted Level in the Next Decade
Objectives: To analyze and describe the spatiotemporal trends of Low back pain (LBP) burdens from 1990 to 2019 and anticipate the following decade’s incidence.Methods: Using data from the Global Burden of Disease (GBD) 2019 Study, we described net drifts, local drifts, age effects, and period cohort effects in incidence and forecasted incidence rates and cases by sex from 2020 to 2029 using the Nordpred R package.Results: LBP remained the leading cause of the musculoskeletal disease burden globally and across all socio-demographic index (SDI) regions. China is the top country. For recent periods, high-SDI countries faced unfavorable or worsening risks. The relative risk of incidence showed improving trends over time and in successively younger birth cohorts amongst low-middle-, middle- and high-middle-SDI countries. Additionally, the age-standardized incidence rates (ASIR) of LBP in both sexes globally showed a decreasing trend, but the incident cases would increase from 223 to 253 million overall in the next decade.Conclusion: As the population ages, incident cases will rise but ASIR will fall. To minimise LBP, public awareness and disease prevention and control are needed
A Survey on Fundamental Limits of Integrated Sensing and Communication
The integrated sensing and communication (ISAC), in which the sensing and communication share the same frequency band and hardware, has emerged as a key technology in future wireless systems due to two main reasons. First, many important application scenarios in fifth generation (5G) and beyond, such as autonomous vehicles, Wi-Fi sensing and extended reality, requires both high-performance sensing and wireless communications. Second, with millimeter wave and massive multiple-input multiple-output (MIMO) technologies widely employed in 5G and beyond, the future communication signals tend to have high-resolution in both time and angular domain, opening up the possibility for ISAC. As such, ISAC has attracted tremendous research interest and attentions in both academia and industry. Early works on ISAC have been focused on the design, analysis and optimization of practical ISAC technologies for various ISAC systems. While this line of works are necessary, it is equally important to study the fundamental limits of ISAC in order to understand the gap between the current state-of-the-art technologies and the performance limits, and provide useful insights and guidance for the development of better ISAC technologies that can approach the performance limits. In this paper, we aim to provide a comprehensive survey for the current research progress on the fundamental limits of ISAC. Particularly, we first propose a systematic classification method for both traditional radio sensing (such as radar sensing and wireless localization) and ISAC so that they can be naturally incorporated into a unified framework. Then we summarize the major performance metrics and bounds used in sensing, communications and ISAC, respectively. After that, we present the current research progresses on fundamental limits of each class of the traditional sensing and ISAC systems. Finally, the open problems and future research directions are discussed
Recommended from our members
Heterogeneous N2O5 reactions on atmospheric aerosols at four Chinese sites : improving model representation of uptake parameters
Heterogeneous reactivity of N2O5 on aerosols is a critical parameter in assessing NOx fate, nitrate production, and particulate chloride activation. Accurate measurement of its uptake coefficient (gamma N2O5) and representation in air quality models are challenging, especially in the polluted environment. With an in situ aerosol flow-tube system, the gamma N2O5 was directly measured on ambient aerosols at two rural sites in northern and southern China. The results were analyzed together with the gamma N2O5 derived from previous field studies in China to obtain a holistic picture of gamma N2O5 uptake and the influencing factors under various climatic and chemical conditions. The field-derived or measured gamma N2O5 was generally promoted by the aerosol water content and suppressed by particle nitrate. Significant discrepancies were found between the measured gamma N2O5 and that estimated from laboratory-determined parameterizations. An observation-based empirical parameterization was derived in the present work, which better reproduced the mean value and variability of the observed gamma N2O5. Incorporating this new parameterization into a regional air quality model (WRF-CMAQ) has improved the simulation of N2O5, nitrogen oxides, and secondary nitrate in the polluted regions of China.Peer reviewe
- …