Multiband fusion is an important technique for radar sensing, which jointly
utilizes measurements from multiple non-contiguous frequency bands to improve
the sensing performance. In the multi-band radar sensing signal model, there
are many local optimums in the associated likelihood function due to the
existence of high frequency component, which makes it difficult to obtain
high-accuracy parameter estimation. To cope with this challenge, we divide the
radar target parameter estimation into two stages equipped with different but
equivalent signal models, where the first-stage coarse estimation is used to
narrow down the search range for the next stage, and the second-stage refined
estimation is based on the Bayesian approach to avoid the convergence to a bad
local optimum of the likelihood function. Specifically, in the coarse
estimation stage, we employ a weighted root MUSIC algorithm to achieve initial
estimation. Then, we apply the block stochastic successive convex approximation
(SSCA) approach to derive a novel stochastic particle-based variational
Bayesian inference (SPVBI) algorithm for the Bayesian estimation of the radar
target parameters in the refined stage. Unlike the conventional particle-based
VBI (PVBI) in which only the probability of each particle is optimized and the
per-iteration computational complexity increases exponentially with the number
of particles, the proposed SPVBI optimizes both the position and probability of
each particle, and it adopts the block SSCA to significantly improve the
sampling efficiency by averaging over iterations. As such, it is shown that the
proposed SPVBI can achieve a better performance than the conventional PVBI with
a much smaller number of particles and per-iteration complexity. Finally,
extensive simulations verify the advantage of the proposed algorithm over
various baseline algorithms