19 research outputs found

    Geographical Clustering and Environmental Determinants of Schistosomiasis from 2007 to 2012 in Jianghan Plain, China

    No full text
    This study compared changes in the spatial clustering of schistosomiasis in Jianghan Plain, China by applying Kulldorff’s spatial scan statistic. The Geodetector software was employed to detect the environmental determinants of schistosomiasis annually from 2007 to 2012. The most likely spatial cluster in 2007 covered the north-central part of Jianghan Plain, whereas those observed from 2008 to 2012 were toward the south, with extended coverage in generally the same areas across various periods, and some variation nevertheless in precise locations. Furthermore, the 2007 period was more likely to be clustered than any other period. We found that temperature, land use, and soil type were the most critical factors associated with infection rates in humans. In addition, land use and soil type had the greatest impact on the prevalence of schistosomiasis in 2009, whereas this effect was minimal in 2007. The effect of temperature on schistosomiasis prevalence reached its maximum in 2010, whereas in 2008, this effect was minimal. Differences observed in the effects of those two factors on the spatial distribution of human schistosomiasis were inconsistent, showing statistical significance in some years and a lack thereof in others. Moreover, when two factors operated simultaneously, a trend of enhanced interaction was consistently observed. High-risk areas with strong interactions of affected factors should be targeted for disease control interventions

    Dietary Flavonoids, Copper Intake, and Risk of Metabolic Syndrome in Chinese Adults

    No full text
    The effects of flavonoids and copper (Cu) on metabolic syndrome (MetS) have been investigated separately, but no information exists about the joint associations between flavonoids and Cu on the risk of MetS in population studies. In this cross-sectional study, a total of 9108 people aged 20–75 years from the Harbin Cohort Study on Diet, Nutrition, and Chronic Non-Communicable Diseases (HDNNCDS) were included. Flavonoid intakes were calculated based on the flavonoid database created in our laboratory. Cu and other nutrient intakes were estimated using the Chinese Food Composition Table. Among all study subjects, a total of 2635 subjects (28.9%) met the diagnostic criteria for inclusion in the MetS group. Total flavonoids (fourth vs. first quartile, odds ratio (OR): 0.77, 95% confidence interval (CI) 0.66–0.90, Ptrend = 0.002) and Cu (OR 0.81, 90% CI: 0.70–0.94, Ptrend = 0.020) were inversely associated with the risk of MetS after adjusting for potential confounders. Higher flavonoid intake was more strongly associated with a lower risk of MetS with high levels of Cu intake (Pinteraction = 0.008). Dose–response effects showed an L-shaped curve between the total intake of five flavonoids and the risk of MetS. These results suggest that higher flavonoid intake is associated with a lower risk of MetS, especially under high levels of Cu intake

    Geographical Environment Factors and Risk Mapping of Human Cystic Echinococcosis in Western China

    No full text
    The study aimed to reveal the risk factors and predict the prevalence of human cystic echinococcosis (CE) in Western China. To do this, we analyzed county-wide data relating to the prevalence of human CE in seven provinces of Western China, along with associated human, natural geographical environmental data. We then used spatial analysis and multiple regression analysis to investigate the correlation between the prevalence of human CE and associated environmental factors and to create a risk map of the disease in the seven provinces. Our analysis showed that grassland area ratio and Tibetan population ratio were independent variables positively correlated with the prevalence of human CE and that gross domestic product (GDP) and land surface temperature (LST; Spring) were negative independent variables. We also created a predictive risk map of human CE that revealed that the high-risk areas were mainly located in the south of Qinghai, the Northwest of Sichuan and most of the Tibet Autonomous Region. Knowledge of the spatial distribution and risk factors associated with human CE could help to prevent and control echinococcosis in China

    Catalyst-Free Polymerization with 100% Atom Economy: Facile Synthesis of Polysulfonates with Multifunctionalities

    No full text
    Catalyst-free spontaneous polymerization for the synthesis of halogen-rich polysulfonates at room temperature in air with 100% atom economy in high yields was developed. The resulting polymers possess various properties, including post-functionalization, extraordinarily high refractive index, visible photodegradation, photoacid generation, multi-color and 3D fluorescent photopatterning, and practical broad-spectrum antibacterial activity

    CEPC Technical Design Report -- Accelerator

    No full text
    The Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s
    corecore