56 research outputs found

    Microbial traits determine soil C emission in response to fresh carbon inputs in forests across biomes

    Get PDF
    Soil priming is a microbial-driven process, which determines key soil–climate feedbacks in response to fresh carbon inputs. Despite its importance, the microbial traits behind this process are largely undetermined. Knowledge of the role of these traits is integral to advance our understanding of how soil microbes regulate carbon (C) emissions in forests, which support the largest soil carbon stocks globally. Using metagenomic sequencing and C-glucose, we provide unprecedented evidence that microbial traits explain a unique portion of the variation in soil priming across forest biomes from tropical to cold temperature regions. We show that microbial functional profiles associated with the degradation of labile C, especially rapid simple sugar metabolism, drive soil priming in different forests. Genes involved in the degradation of lignin and aromatic compounds were negatively associated with priming effects in temperate forests, whereas the highest level of soil priming was associated with β-glucosidase genes in tropical/subtropical forests. Moreover, we reconstructed, for the first time, 42 whole bacterial genomes associated with the soil priming effect and found that these organisms support important gene machinery involved in priming effect. Collectively, our work demonstrates the importance of microbial traits to explain soil priming across forest biomes and suggests that rapid carbon metabolism is responsible for priming effects in forests. This knowledge is important because it advances our understanding on the microbial mechanisms mediating soil–climate feedbacks at a continental scale.This work were financially supported by the National Natural Science Foundation of China (41907031), the Chinese Academy of Sciences “Light of West China” Program for Introduced Talent in the West, the National Natural Science Foundation of China (31570440, 31270484), the Key International Scientific and Technological Cooperation and Exchange Project of Shaanxi Province, China (2020KWZ-010), the 2021 First Funds for Central Government to Guide Local Science and Technology Development in Qinghai Province (2021ZY002), the i-LINK +2018 (LINKA20069) from CSIC, and a Ramón y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018-025483-I

    Global patterns of woody residence time and its influence on model simulation of aboveground biomass

    Get PDF
    Woody residence time (τw) is an important parameter that expresses the balance between mature forest recruitment/growth and mortality. Using field data collected from the literature, this study explored the global forest τw and investigated its influence on model simulations of aboveground biomass (AGB) at a global scale. Specifically, τw was found to be related to forest age, annual temperature, and precipitation at a global scale, but its determinants were different among various plant function types. The estimated global forest τw based on the filed data showed large spatial heterogeneity, which plays an important role in model simulation of AGB by a dynamic global vegetation model (DGVM). The τw could change the resulting AGB in tenfold based on a site-level test using the Monte Carlo method. At the global level, different parameterization schemes of the Integrated Biosphere Simulator using the estimated τw resulted in a twofold change in the AGB simulation for 2100. Our results highlight the influences of various biotic and abiotic variables on forest τw. The estimation of τw in our study may help improve the model simulations and reduce the parameter\u27s uncertainty over the projection of future AGB in the current DGVM or Earth System Models. A clearer understanding of the responses of τw to climate change and the corresponding sophisticated description of forest growth/mortality in model structure is also needed for the improvement of carbon stock prediction in future studies

    Patterns and drivers of prokaryotic communities in thermokarst lake water across Northern Hemisphere

    Get PDF
    13 páginas.- 5 figuras.- 81referencias.Aim: The formation of thermokarst lakes could make a large amount of carbon accessible to microbial degradation, potentially intensifying the permafrost carbon-climate feedback via carbon dioxide/methane emissions. Because of their diverse functional roles, prokaryotes could strongly mediate biogeochemical cycles in thermokarst lakes. However, little is known about the large-scale patterns and drivers of these communities. Location: Permafrost regions in the Northern Hemisphere. Time period: Present day. Major taxa studied: Prokaryotes. Methods: Based on a combination of large-scale measurements on the Tibetan Plateau and data syntheses in pan-Arctic regions, we constructed a comprehensive dataset of 16S rRNA sequences from 258 thermokarst lakes across Northern Hemisphere permafrost regions. We also used the local contributions to beta diversity (LCBD) to characterize the variance of prokaryotic species composition and screened underlying drivers by conducting a random forest modelling analysis. Results: Prokaryotes in thermokarst lake water were dominated by the orders Burkholderiales, Micrococcales, Flavobacteriales and Frankiales. The relative abundance of dominant taxa was positively associated with dissolved organic matter (DOM) properties, especially for the chromophoric/aromatic compounds. Microbial structure differed between high-altitude and high-latitude thermokarst lakes, with the dominance of Flavobacterium in high-altitude lakes, and the enrichment of Polynucleobacter in high-latitude lakes. More importantly, climatic variables were among the main drivers shaping the large-scale variation of prokaryotic communities. Specifically, mean annual precipitation was the best predictor for prokaryotic beta diversity across the Northern Hemisphere, as well as in the high-altitude permafrost regions, while mean annual air temperature played a key role in the high-latitude thermokarst lakes. Main conclusions: Our findings demonstrate significant associations between dominant taxa and DOM properties, as well as the important role of climatic factors in affecting prokaryotic communities. These findings suggest that climatic change may alter DOM conditions and induce dynamics in prokaryotic communities of thermokarst lake water in the Northern Hemisphere. © 2023 John Wiley & Sons Ltd.This work was supported by the National Key Research and Development Program of China (2022YFF0801903), National Natural Science Foundation of China (31988102, and 31825006), and Tencent Foundation through the XPLORER PRIZE. M.D‐B. acknowledges support from TED2021‐130908B‐C41/AEI/10.13039/501100011033/Unión Europea NextGenerationEU/PRTR and from the Spanish Ministry of Science and Innovation for the I + D + i project PID2020‐115813RA‐I00 funded by MCIN/AEI/10.13039/501100011033.Peer reviewe

    Challenging National Narratives: On the Origins of Sweet Potato in China as Global Commodity During the Early Modern Period

    Get PDF
    The introduction of American cereal crops is probably one of the most important events in China¿s agricultural history, having a great effect on the agriculture production, national life, the transformation of consumer behaviour and, to some extent, the nationalization of consumption. The sweet potato (Ipomoea Batatas L.), in Chinese g¿nsh¿ ¿¿, is a staple food crop for ancient Chinese society. Today it still plays an important role in Chinese daily life, as well as guaranteeing national food security.GECEM Project, Global Encounters between China and Europe: Trade Networks, Consumption and Cultural Exchanges in Macau and Marseille (1680-1840), ERC (European Research Council)- Starting Grant, programa Horizon 2020, número de ref. 679371, www.gecem.eu.Versión del edito

    Above- and Belowground Biomass Allocation in Shrub Biomes across the Northeast Tibetan Plateau

    No full text
    Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above-and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above-and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011-2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m(-2), and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above-and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above-and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level

    Soil Fungal Community Composition, Not Assembly Process, Was Altered by Nitrogen Addition and Precipitation Changes at an Alpine Steppe

    No full text
    Global climate change and nitrogen deposition have been having broad impacts on microorganisms. On the Qinghai-Tibetan Plateau (QTP), the responses of soil microbial community assemblage and diversity to nitrogen deposition and changes in precipitation are poorly understood, especially in the alpine steppe. In this study, we conducted a field manipulative experiment of nitrogen deposition and precipitation amount in an alpine steppe on the northeastern QTP and investigated the responses of community composition, diversity, and community assemblage of soil fungi. Soil fungal community compositions were significantly altered under nitrogen addition, precipitation change, and their interaction, and positively related with soil moisture, soil pH, and plant species richness. However, they were negatively related to soil mineralizable N and soil available P content. Operational taxonomic units (OTU) richness and Chao 1 index decreased under nitrogen addition combined with precipitation reduction treatment, whereas the Shannon-Wiener index declined only under precipitation increment treatment. Convergent fungal community assembly processes were not acutely altered by both nitrogen addition and precipitation changes, indicating that environmental filtering was a dominant ecological process controlling fungal community assemblage. By elucidating the above questions, the study enhanced our ability to predict the responses of soil fungal communities to nitrogen deposition and precipitation changes at alpine steppes on the QTP in the future

    Inverse analysis of coupled carbon-nitrogen cycles against multiple datasets at ambient and elevated CO2

    No full text
    Aims Carbon (C) sequestration in terrestrial ecosystems is strongly regulated by nitrogen (N) processes. However, key parameters that determine the degree of N regulation on terrestrial C sequestration have not been well quantified. Methods Here, we used a Bayesian probabilistic inversion approach to estimate 14 target parameters related to ecosystem C and N interactions from 19 datasets obtained from Duke Forests under ambient and elevated carbon dioxide (CO2). Important Findings Our results indicated that 8 of the 14 target parameters, such as C:N ratios in most ecosystem compartments, plant N uptake and external N input, were well constrained by available datasets whereas the others, such as N allocation coefficients, N loss and the initial value of mineral N pool were poorly constrained. Our analysis showed that elevated CO2 led to the increases in C:N ratios in foliage, fine roots and litter. Moreover, elevated CO2 stimulated plant N uptake and increased ecosystem N capital in Duke Forests by 25.2 and 8.5%, respectively. In addition, elevated CO2 resulted in the decrease of C exit rates (i.e. increases in C residence times) in foliage, woody biomass, structural litter and passive soil organic matter, but the increase of C exit rate in fine roots. Our results demonstrated that CO2 enrichment substantially altered key parameters in determining terrestrial C and N interactions, which have profound implications for model improvement and predictions of future C sequestration in terrestrial ecosystems in response to global change

    Effects of substrate addition on soil respiratory carbon release under long-term warming and clipping in a tallgrass prairie.

    No full text
    Regulatory mechanisms of soil respiratory carbon (C) release induced by substrates (i.e., plant derived substrates) are critical for predicting ecosystem responses to climate change, but the mechanisms are not well understood. In this study, we sampled soils from a long-term field manipulative experiment and conducted a laboratory incubation to explore the role of substrate supply in regulating the differences in soil C release among the experimental treatments, including control, warming, clipping, and warming plus clipping. Three types of substrates (glucose, C3 and C4 plant materials) were added with an amount equal to 1% of soil dry weight under the four treatments. We found that the addition of all three substrates significantly stimulated soil respiratory C release in all four warming and clipping treatments. In soils without substrate addition, warming significantly stimulated soil C release but clipping decreased it. However, additions of glucose and C3 plant materials (C3 addition) offset the warming effects, whereas C4 addition still showed the warming-induced stimulation of soil C release. Our results suggest that long-term warming may inhibit microbial capacity for decomposition of C3 litter but may enhance it for decomposition of C4 litter. Such warming-induced adaptation of microbial communities may weaken the positive C-cycle feedback to warming due to increased proportion of C4 species in plant community and decreased litter quality. In contrast, clipping may weaken microbial capacity for warming-induced decomposition of C4 litter but may enhance it for C3 litter. Warming- and clipping-induced shifts in microbial metabolic capacity may be strongly associated with changes in plant species composition and could substantially influence soil C dynamics in response to global change

    Relationships between above-ground biomass (AGB) and below-ground biomass (BGB) in Tibetan Plateau shrubs.

    No full text
    <p>(a): the slope of the relationship between log AGB and log BGB for overall shrub was 0.61, with 95% confidence intervals of 0.46–0.75. (b): the red line denotes the allocation relationship for alpine shrubs, while the green line indicates the relationship for desert shrubs. The 95% confidence intervals of the slopes for alpine shrubs and desert shrubs were 0.68–1.04 and 0.34–0.78, respectively.</p
    corecore