166 research outputs found

    Magnetic structure and Ising-like antiferromagnetism in the bilayer triangular lattice compound NdZnPO

    Full text link
    The complex interplay of spin frustration and quantum fluctuations in low-dimensional quantum materials leads to a variety of intriguing phenomena. This research focuses on a detailed analysis of the magnetic behavior exhibited by NdZnPO, a bilayer spin-1/2 triangular lattice antiferromagnet. The investigation employs magnetization, specific heat, and powder neutron scattering measurements. At zero field, a long-range magnetic order is observed at TN=1.64 KT_{\rm N}=1.64~\rm K. Powder neutron diffraction experiments show the Ising-like magnetic moments along the cc-axis, revealing a stripe-like magnetic structure with three equivalent magnetic propagation vectors. Application of a magnetic field along the cc-axis suppresses the antiferromagnetic order, leading to a fully polarized ferromagnetic state above Bc=4.5 TB_{\rm c}=4.5~\rm T. This transition is accompanied by notable enhancements in the nuclear Schottky contribution. Moreover, the absence of spin frustration and expected field-induced plateau-like phases are remarkable observations. Detailed calculations of magnetic dipolar interactions revealed complex couplings reminiscent of a honeycomb lattice, suggesting the potential emergence of Kitaev-like physics within this system. This comprehensive study of the magnetic properties of NdZnPO highlights unresolved intricacies, underscoring the imperative for further exploration to unveil the underlying governing mechanisms.Comment: 11 pages, 6 figure

    Shape-Controlled Synthesis of ZnS Nanostructures: A Simple and Rapid Method for One-Dimensional Materials by Plasma

    Get PDF
    In this paper, ZnS one-dimensional (1D) nanostructures including tetrapods, nanorods, nanobelts, and nanoslices were selectively synthesized by using RF thermal plasma in a wall-free way. The feeding rate and the cooling flow rate were the critical experimental parameters for defining the morphology of the final products. The detailed structures of synthesized ZnS nanostructures were studied through transmission electron microscope, X-ray diffraction, and high-resolution transmission electron microscope. A collision-controlled growth mechanism was proposed to explain the growth process that occurred exclusively in the gas current by a flowing way, and the whole process was completed in several seconds. In conclusion, the present synthetic route provides a facile way to synthesize ZnS and other hexagonal-structured 1D nanostructures in a rapid and scalable way

    Fabrication of Porous TiO2 Hollow Spheres and Their Application in Gas Sensing

    Get PDF
    In this work, porous TiO2 hollow spheres with an average diameter of 100 nm and shell thickness of 20 nm were synthesized by a facile hydrothermal method with NH4HCO3 as the structure-directing agent, and the formation mechanism for this porous hollow structure was proved to be the Ostwald ripening process by tracking the morphology of the products at different reaction stages. The product was characterized by SEM, TEM, XRD and BET analyses, and the results show that the as-synthesized products are anatase phase with a high surface area up to 132.5 m2/g. Gas-sensing investigation reveals that the product possesses sensitive response to methanal gas at 200°C due to its high surface area

    Predicting September Arctic Sea Ice: A Multi-Model Seasonal Skill Comparison

    Get PDF
    Abstract This study quantifies the state-of-the-art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multi-model dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001–2020 for predictions of Pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on June 1, July 1, August 1, and September 1. This diverse set of statistical and dynamical models can individually predict linearly detrended Pan-Arctic SIE anomalies with skill, and a multi-model median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to Pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and Central Arctic sectors. The skill of dynamical and statistical models is generally comparable for Pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least three months in advance.</jats:p

    Acute Ethanol Inhibition of γ Oscillations Is Mediated by Akt and GSK3β

    Get PDF
    Hippocampal network oscillations at gamma band frequency (γ, 30–80 Hz) are closely associated with higher brain functions such as learning and memory. Acute ethanol exposure at intoxicating concentrations (≥50 mM) impairs cognitive function. This study aimed to determine the effects and the mechanisms of acute ethanol exposure on γ oscillations in an in vitro model. Ethanol (25–100 mM) suppressed kainate-induced γ oscillations in CA3 area of the rat hippocampal slices, in a concentration-dependent, reversible manner. The ethanol-induced suppression was reduced by the D1R antagonist SCH23390 or the PKA inhibitor H89, was prevented by the Akt inhibitor triciribine or the GSk3β inhibitor SB415286, was enhanced by the NMDA receptor antagonist D-AP5, but was not affected by the MAPK inhibitor U0126 or PI3K inhibitor wortmanin. Our results indicate that the intracellular kinases Akt and GSk3β play a critical role in the ethanol-induced suppression of γ oscillations and reveal new cellular pathways involved in the ethanol-induced cognitive impairment

    A NEW COMPARATIVE ANALYSIS OF LOCAL URBAN MORPHOLOGY BASED ON LOCAL CLIMATE ZONES: A STUDY USING MOBILE SURVEYS IN CHENGDU TESTBED

    Get PDF
    Proceedings of the XXV ISUF International Conference “Urban Form and Social Context: from Traditions to Newest Demands” (Krasnoyarsk, July 5–9, 2018)The local climate zones (LCZ) classification introduced by Stewart and Oke is to standardize climatic observations. It aims at linking different land cover types to corresponding thermal properties directly from the perspective of urban geography. Yet the classification needs further development when it is applied to local studies, especially to analysis of the urban morphology. The World Urban Database and Access Portal Tools (WUDAPT) is intended to produce a global shared database capturing information on urban form and function for climate applications. Chengdu was chosen as a testbed for WUDAPT level 1 and level 2 development. This study’s purpose is to improve the local development and validate the applicability of the LCZ classification in Chengdu in hot summer and cold winter areas in China based on the urban morphological methods in architecture and urban design. A local urban morphological analysis template was developed, including qualitative characteristics and quantitative indicators. Field investigations on urban morphology and mobile surveys on air temperature have taken place 3 times since the summer of 2017 to gather the data about air temperature with surveyors going by vehicles and on foot. The result was in general accord with the LCZ theory. Moreover, it presented some interesting differences under the impact of local urban morphology

    Optical Emission Spectroscopy Diagnostics of Atmospheric Pressure Radio Frequency Ar-H-2 Inductively Coupled Thermal Plasma

    No full text
    The atmospheric pressure radio frequency (RF) inductively coupled thermal plasma (ICTP) has been extensively used for many industrial processes. In order to understand the physical-chemical mechanism involved in the discharge process of ICTP, in situ optical emission spectroscopy (OES) was carried out to diagnose and determine the active particles and electron excitation temperature in this plasma. Several active particles such as Ar*, H-alpha, and H-beta were detected in the emission spectrum of Ar-H-2 ICTP. Based on the Boltzmann plot method, the electron excitation temperature and thermal efficiency of ICTP were evaluated. It was obtained that the electron excitation temperatures in Ar-H-2 ICTP varied from 9651.70 to 16691.91 K when the applied power was in the range of 8-15 kW, which was significantly higher than the electron excitation temperature in Ar ICTP at the same applied power. Besides, the thermal efficiency was enhanced from 17.19% for the Ar ICTP to 30.69% for the Ar-H-2 ICTP. These results may be beneficial for understanding of the discharge process in atmospheric pressure Ar-H-2 ICTP
    corecore