8 research outputs found

    Efficacy and Antifungal Mechanism of Rosemary Essential Oil against <i>Colletotrichum gloeosporioides</i>

    No full text
    The antifungal activity and mechanism of rosemary essential oil against Colletotrichum gloeosporioides, the walnut anthracnose pathogen, were investigated using scanning electron microscopy (SEM), index determination and transcriptome technique. The results showed that rosemary essential oil could inhibit the growth of C. gloeosporioides with minimum inhibitory (MIC) and fungicidal (MFC) concentrations of 15.625 μL/mL and 31.25 μL/mL, respectively. Scanning electron microscopy revealed that the mycelium morphology became shriveled, twisted, and severely deformed after being treated with rosemary essential oil. The activity of chitinase, which decomposes fungal cell wall components in C. gloeosporioides, increased. The ergosterol content in the plasma membrane decreased, while the cell contents including nucleic acids, soluble protein and soluble reducing sugar were released resulting in the extracellular electrical conductivity being changed. For metabolic activity, the enzymes succinate dehydrogenase (SDH), malate dehydrogenase (MDH), ATPase and ATP decreased, whereas phosphofructokinase (PFK) increased. Transcriptome sequencing results showed that the antifungal mechanism of rosemary essential oil involves the destruction of the cell wall and membrane, inhibition of genetic material synthesis, and cell division and differentiation. The results are helpful to understand the efficacy and antifungal mechanism of rosemary essential oil against C. gloeosporioides and provide a theoretical basis for the development of rosemary essential oil as a biological control agent

    Search for CPCP violation in ttH and tH production in multilepton channels in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe charge-parity (CP) structure of the Yukawa interaction between the Higgs (H) boson and the top quark is measured in a data sample enriched in the tt \overline{\textrm{t}} H and tH associated production, using 138 fb1^{−1} of data collected in proton-proton collisions at s \sqrt{s} = 13 TeV by the CMS experiment at the CERN LHC. The study targets events where the H boson decays via H → WW or H → ττ and the top quarks decay via t → Wb: the W bosons decay either leptonically or hadronically, and final states characterized by the presence of at least two leptons are studied. Machine learning techniques are applied to these final states to enhance the separation of CP -even from CP -odd scenarios. Two-dimensional confidence regions are set on κt_{t} and κt \overset{\sim }{\kappa } _{t}, which are respectively defined as the CP -even and CP -odd top-Higgs Yukawa coupling modifiers. No significant fractional CP -odd contributions, parameterized by the quantity |fCPHtt {f}_{CP}^{\textrm{Htt}} | are observed; the parameter is determined to be |fCPHtt {f}_{CP}^{\textrm{Htt}} | = 0.59 with an interval of (0.24, 0.81) at 68% confidence level. The results are combined with previous results covering the H → ZZ and H → γγ decay modes, yielding two- and one-dimensional confidence regions on κt_{t} and κt \overset{\sim }{\kappa } _{t}, while |fCPHtt {f}_{CP}^{\textrm{Htt}} | is determined to be |fCPHtt {f}_{CP}^{\textrm{Htt}} | = 0.28 with an interval of |fCPHtt {f}_{CP}^{\textrm{Htt}} | < 0.55 at 68% confidence level, in agreement with the standard model CP -even prediction of |fCPHtt {f}_{CP}^{\textrm{Htt}} | = 0.[graphic not available: see fulltext
    corecore