107 research outputs found

    Geometry-induced reduction of the critical current in superconducting nanowires

    Full text link
    Reduction of the critical current in narrow superconducting NbN lines with sharp and rounded bends with respect to the critical current in straight lines was studied at different temperatures. We compare our experimental results with the reduction expected in the framework of the London model and the Ginsburg-Landau model. We have experimentally found that the reduction is significantly less than either model predicts. We also show that in our NbN lines the bends mostly contribute to the reduction of the critical current at temperatures well below the superconducting transition temperature

    Considerable enhancement of the critical current in a superconducting film by magnetized magnetic strip

    Full text link
    We show that a magnetic strip on top of a superconducting strip magnetized in a specified direction may considerably enhance the critical current in the sample. At fixed magnetization of the magnet we observed diode effect - the value of the critical current depends on the direction of the transport current. We explain these effects by a influence of the nonuniform magnetic field induced by the magnet on the current distribution in the superconducting strip. The experiment on a hybrid Nb/Co structure confirmed the predicted variation of the critical current with a changing value of magnetization and direction of the transport current.Comment: 6 pages, 7 figure

    Nonequilibrium phenomena in high Landau levels

    Full text link
    Developments in the physics of 2D electron systems during the last decade have revealed a new class of nonequilibrium phenomena in the presence of a moderately strong magnetic field. The hallmark of these phenomena is magnetoresistance oscillations generated by the external forces that drive the electron system out of equilibrium. The rich set of dramatic phenomena of this kind, discovered in high mobility semiconductor nanostructures, includes, in particular, microwave radiation-induced resistance oscillations and zero-resistance states, as well as Hall field-induced resistance oscillations and associated zero-differential resistance states. We review the experimental manifestations of these phenomena and the unified theoretical framework for describing them in terms of a quantum kinetic equation. The survey contains also a thorough discussion of the magnetotransport properties of 2D electrons in the linear response regime, as well as an outlook on future directions, including related nonequilibrium phenomena in other 2D electron systems.Comment: 60 pages, 41 figure

    Magnetic-field-dependent zero-bias diffusive anomaly in Pb oxide-n-InAs structures: Coexistence of two- and three-dimensional states

    Full text link
    The results of experimental and theoretical studies of zero-bias anomaly (ZBA) in the Pb-oxide-n-InAs tunnel structures in magnetic field up to 6T are presented. A specific feature of the structures is a coexistence of the 2D and 3D states at the Fermi energy near the semiconductor surface. The dependence of the measured ZBA amplitude on the strength and orientation of the applied magnetic field is in agreement with the proposed theoretical model. According to this model, electrons tunnel into 2D states, and move diffusively in the 2D layer, whereas the main contribution to the screening comes from 3D electrons.Comment: 8 double-column pages, REVTeX, 9 eps figures embedded with epsf, published versio

    Electron-Assisted Hopping in Two Dimensions

    Full text link
    We have studied the non-ohmic effects in the conductivity of a two-dimensional system which undergoes the crossover from weak to strong localization with decreasing electron concentration. When the electrons are removed from equilibrium with phonons, the hopping conductivity depends only on the electron temperature. This indicates that the hopping transport in a system with a large localization length is assisted by electron-electron interactions rather than by the phonons.Comment: 5 pages, 4 figure

    Combinations of Plant Water-Stress and Neonicotinoids Can Lead to Secondary Outbreaks of Banks Grass Mite (Oligonychus Pratensis Banks)

    Get PDF
    Spider mites, a cosmopolitan pest of agricultural and landscape plants, thrive under hot and dry conditions, which could become more frequent and extreme due to climate change. Recent work has shown that neonicotinoids, a widely used class of systemic insecticides that have come under scrutiny for non-target effects, can elevate spider mite populations. Both water-stress and neonicotinoids independently alter plant resistance against herbivores. Yet, the interaction between these two factors on spider mites is unclear, particularly for Banks grass mite (Oligonychus pratensis; BGM). We conducted a field study to examine the effects of water-stress (optimal irrigation = 100% estimated evapotranspiration (ET) replacement, water stress = 25% of the water provided to optimally irrigated plants) and neonicotinoid seed treatments (control, clothianidin, thiamethoxam) on resident mite populations in corn (Zea mays, hybrid KSC7112). Our field study was followed by a manipulative field cage study and a parallel greenhouse study, where we tested the effects of water-stress and neonicotinoids on BGM and plant responses. We found that water-stress and clothianidin consistently increased BGM densities, while thiamethoxam-treated plants only had this effect when plants were mature. Water-stress and BGM herbivory had a greater effect on plant defenses than neonicotinoids alone, and the combination of BGM herbivory with the two abiotic factors increased the concentration of total soluble proteins. These results suggest that spider mite outbreaks by combinations of changes in plant defenses and protein concentration are triggered by water-stress and neonicotinoids, but the severity of the infestations varies depending on the insecticide active ingredient

    Post genomics era for orchid research

    Get PDF
    corecore