244 research outputs found

    Causal Mediation Analysis for Difference-in-Difference Design and Panel Data

    Get PDF
    Advantages of panel data, i.e., difference in difference (DID) design data, are a large sample size and easy availability. Therefore, panel data are widely used in epidemiology and in all social science fields. The literatures on causal inferences of panel data setting or DID design are growing, but no theory or mediation analysis method has been proposed for such settings. In this study, we propose a methodology for conducting causal mediation analysis in DID design and panel data setting. We provide formal counterfactual definitions for controlled direct effect and natural direct and indirect effect in panel data setting and DID design, including the identification and required assumptions. We also demonstrate that, under the assumptions of linearity and additivity, controlled direct effects can be estimated by contrasting marginal and conditional DID estimators whereas natural indirect effects can be estimated by calculating the product of the exposure-mediator DID estimator and the mediator-outcome DID estimator. A panel regression-based approach is also proposed. The proposed method is then used to investigate mechanisms of the effects of the Covid 19 pandemic on the mental health status of the population. The results revealed that mobility restrictions mediated approximately 45 % of the causal effect of Covid 19 on mental health status

    Oral-performance language tasks for CSL beginners in second life

    Get PDF

    Scopoletin 8-Hydroxylase-Mediated Fraxetin Production is Crucial for Iron Mobilization

    Get PDF
    Iron (Fe) is an essential mineral nutrient and an important factor for the composition of natural plant communities. Low Fe availability in aerated soils with neutral or alkaline pH has led to the evolution of elaborate mechanisms that extract Fe from the soil solution. In Arabidopsis (Arabidopsis thaliana), Fe is acquired by an orchestrated strategy that comprises mobilization, chelation, and reduction of Fe3+ prior to its uptake. Here, we show that At3g12900, previously annotated as scopoletin 8-hydroxylase (S8H), participates in Fe acquisition by mediating the biosynthesis of fraxetin (7,8-dihydroxy-6-methoxycoumarin), a coumarin derived from the scopoletin pathway. S8H is highly induced in roots of Fe-deficient plants both at the transcript and protein levels. Mutants defective in the expression of S8H showed increased sensitivity to growth on pH 7.0 media supplemented with an immobile source of Fe and reduced secretion of fraxetin. Transgenic lines overexpressing S8H exhibited an opposite phenotype. Homozygous s8h mutants grown on media with immobilized Fe accumulated significantly more scopolin, the storage form of scopoletin, supporting the designated function of S8H in scopoletin hydroxylation. Fraxetin exhibited Fe-reducing properties in vitro with higher rates being observed at neutral relative to acidic pH. Supplementing the media containing immobile Fe with fraxetin partially rescued the s8h mutants. In natural Arabidopsis accessions differing in their performance on media containing immobilized Fe, the amount of secreted fraxetin was highly correlated with growth and Fe and chlorophyll content, indicating that fraxetin secretion is a decisive factor for calcicole-calcifuge behavior (i.e. the ability/inability to thrive on alkaline soils) of plants

    Memory Impairment and Plasma BDNF Correlates of the BDNF Val66Met Polymorphism in Patients With Bipolar II Disorder

    Get PDF
    Studies suggest that a functional polymorphism of brain-derived neurotrophic factor (BDNF), polymorphism BDNF Val66Met affects cognitive functions, however, the effect is unclear in bipolar II (BD-II) disorder. We used the Wechsler Memory Scale-third edition (WMS-III), the presence of the BDNF Val66Met polymorphism, and plasma concentrations of BDNF to investigate the association between memory impairment and BDNF in BD-II disorder. We assessed the memory functions of 228 BD-II patients and 135 healthy controls (HCs). BD-II patients had significantly lower scores on five of the eight WMS-III subscales. In addition to education, the BDNF polymorphism were associated with the following subscales of WMS-III, auditory delayed memory, auditory delayed recognition memory and general memory scores in BD-II patients, but not in HC. Moreover, BD-II patients with the Val-homozygote scored significantly higher on the visual immediate memory subscale than did those with the Met/Met and Val/Met polymorphisms. The significantly positive effect of the Val-homozygote did not have a significantly positive effect on memory in the HC group, however. We found no significant association between BDNF polymorphisms and plasma concentrations of BDNF. The plasma BDNF was more likely to be associated with clinical characteristics than it was with memory indices in the BD-II group. The impaired memory function in BD-II patients might be dependent upon the association between the BDNF Val66Met polymorphism and peripheral BDNF levels

    Activations of Both Extrinsic and Intrinsic Pathways in HCT 116 Human Colorectal Cancer Cells Contribute to Apoptosis through p53-Mediated ATM/Fas Signaling by Emilia sonchifolia Extract, a Folklore Medicinal Plant

    Get PDF
    Emilia sonchifolia (L.) DC (Compositae), an herbaceous plant found in Taiwan and India, is used as folk medicine. The clinical applications include inflammation, rheumatism, cough, cuts fever, dysentery, analgesic, and antibacteria. The activities of Emilia sonchifolia extract (ESE) on colorectal cancer cell death have not been fully investigated. The purpose of this study explored the induction of apoptosis and its molecular mechanisms in ESE-treated HCT 116 human colorectal cancer cells in vitro. The methanolic ESE was characterized, and γ-humulene was formed as the major constituent (63.86%). ESE induced cell growth inhibition in a concentration- and time-dependent response by MTT assay. Apoptotic cells (DNA fragmentation, an apoptotic catachrestic) were found after ESE treatment by TUNEL assay and DNA gel electrophoresis. Alternatively, ESE stimulated the activities of caspase-3, -8, and -9 and their specific caspase inhibitors protected against ESE-induced cytotoxicity. ESE promoted the mitochondria-dependent and death-receptor-associated protein levels. Also, ESE increased ROS production and upregulated the levels of ATM, p53, and Fas in HCT 116 cells. Strikingly, p53 siRNA reversed ESE-reduced viability involved in p53-mediated ATM/Fas signaling in HCT 116 cells. In summary, our result is the first report suggesting that ESE may be potentially efficacious in the treatment of colorectal cancer

    Solanum lyratum

    Get PDF
    We investigated the molecular mechanisms of cell cycle arrest and apoptotic death induced by Solanum lyratum extracts (SLE) or diosgenin in WEHI-3 murine leukemia cells in vitro and antitumor activity in vivo. Diosgenin is one of the components of SLE. Our study showed that SLE and diosgenin decreased the viable WEHI-3 cells and induced G0/G1 phase arrest and apoptosis in concentration- or time-dependent manners. Both reagents increased the levels of ROS production and decreased the mitochondrial membrane potential (ΔΨm). SLE- and diosgenin-triggered apoptosis is mediated through modulating the extrinsic and intrinsic signaling pathways. Intriguingly, the p53 inhibitor (pifithrin-α), anti-Fas ligand (FasL) mAb, and specific inhibitors of caspase-8 (z-IETD-fmk), caspase-9 (z-LEHD-fmk), and caspase-3 (z-DEVD-fmk) blocked SLE- and diosgenin-reduced cell viability of WEHI-3 cells. The in vivo study demonstrated that SLE has marked antitumor efficacy against tumors in the WEHI-3 cell allograft model. In conclusion, SLE- and diosgenin-induced G0/G1 phase arrest and triggered extrinsic and intrinsic apoptotic pathways via p53 activation in WEHI-3 cells. SLE also exhibited antitumor activity in vivo. Our findings showed that SLE may be potentially efficacious in the treatment of leukemia in the future

    4β-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The crude extract of the fruit bearing plant, <it>Physalis peruviana </it>(golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown.</p> <p>Methods</p> <p>Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug.</p> <p>Results</p> <p>It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (<it>p </it>< 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4βHWE in both dose- and time-dependent manners (<it>p </it>< 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC<sub>50</sub>) of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G<sub>1 </sub>accumulation and slight arrest at the G<sub>2</sub>/M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G<sub>2</sub>/M arrest for H1299 cells treated with 5 μg/mL for 24 h.</p> <p>Conclusions</p> <p>In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer.</p
    corecore