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Iron (Fe) is an essential mineral nutrient and an important factor for the composition of natural plant communities. Low Fe 
availability in aerated soils with neutral or alkaline pH has led to the evolution of elaborate mechanisms that extract Fe from the 
soil solution. In Arabidopsis (Arabidopsis thaliana), Fe is acquired by an orchestrated strategy that comprises mobilization, 
chelation, and reduction of Fe3+ prior to its uptake. Here, we show that At3g12900, previously annotated as scopoletin 8-
hydroxylase (S8H), participates in Fe acquisition by mediating the biosynthesis of fraxetin (7,8-dihydroxy-6- 
methoxycoumarin), a coumarin derived from the scopoletin pathway. S8H is highly induced in roots of Fe-deficient plants 
both at the transcript and protein levels. Mutants defective in the expression of S8H showed increased sensitivity to growth on 
pH 7.0 media supplemented with an immobile source of Fe and reduced secretion of fraxetin. Transgenic lines overexpressing 
S8H exhibited an opposite phenotype. Homozygous s8h mutants grown on media with immobilized Fe accumulated 
significantly more scopolin, the storage form of scopoletin, supporting the designated function of S8H in scopoletin 
hydroxylation. Fraxetin exhibited Fe-reducing properties in vitro with higher rates  being observed at neutral  relative to  
acidic pH. Supplementing the media containing immobile Fe with fraxetin partially rescued the s8h mutants. In natural 
Arabidopsis accessions differing in their performance on media containing immobilized Fe, the amount of secreted fraxetin 
was highly correlated with growth and Fe and chlorophyll content, indicating that fraxetin secretion is a decisive factor for 
calcicole-calcifuge behavior (i.e. the ability/inability to thrive on alkaline soils) of plants. 

 
 

As a key edaphic factor, soil pH has a strong impact 
on the availability of mineral nutrients and the distri- 
bution of species in natural plant communities. Iron (Fe) 
solubility decreases dramatically with increasing pH, 
excluding so-called calcifuge (“chalk-fleeing”) species 
from carbonate-rich, alkaline soils due to their inability 
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to acquire sufficient Fe under such conditions. Calcicole 
behavior, i.e. the ability to thrive on alkaline soils, has 
been attributed to the efficiency of Fe acquisition of a 
cultivar or species, a trait that strongly contributes to 
the ability to survive and reproduce on such soils 
(Zohlen and Tyler, 2004). 

Plants have been categorized into two phylogeneti- 
cally distinct groups that have evolved mutually exclu- 
sive mechanisms to increase the solubility of Fe (Römheld 
and Marschner, 1986). In nongraminaceous species, such 
as Arabidopsis (Arabidopsis thaliana), Fe is mobilized by 
net proton extrusion into the rhizosphere mediated by 
the P-type ATPase AHA2 (Santi and Schmidt, 2009) and 
reduced through the root surface Fe chelate reductase 
FERRIC  REDUCTION  OXIDASE2  (FRO2;   Robinson 
et al., 1999) before Fe2+ is taken up via the high-affinity 
Fe2+ transporter IRON REGULATED TRANSPORTER1 
(IRT1; Eide et al., 1996; Vert et al., 2002). This mecha- 
nism  has been referred  to as strategy  I (Römheld and 
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Marschner, 1986; Brumbarova et al., 2015). Grasses 
(Poales) have adopted a system in which secretion of 
high-affinity Fe chelators of the mugineic acid family, 
generically referred to as phytosiderophores, precedes 
uptake of the Fe3+-phytosiderophore complex without 
prior reduction (strategy II; Kobayashi and Nishizawa, 
2012). However, recent studies suggest that secretion of 
Fe-chelating compounds is not unique to graminaceous 
species. In Arabidopsis, the scopoletin pathway is 
reprogrammed upon Fe deficiency to produce and secrete 
coumarins with Fe-mobilizing properties, which is of 
particular importance in alkaline soils in which the free 
ion activity of Fe  is  extremely  low  (Rodríguez-Celma 
et al., 2013; Schmid et al., 2014; Fourcroy et al., 2014; 
Schmidt et al., 2014). Expression profiling, genetic, and 
biochemical approaches implicated the 2-oxoglutarate and 
Fe(II)-dependent dioxygenase (2OGD) FERULOYL-COA 
6’-HYDROXYLASE1 (F69H1) and the ABC transporter 
PLEIOTROPIC DRUG RESISTANCE9 (PDR9) as key 
nodes in the biosynthesis and secretion of Fe-mobilizing 
coumarins, respectively (Kai et al., 2008; Yang et al., 2010; 
Lan et al., 2011; Rodríguez-Celma et al., 2013; Schmid et al., 
2014; Fourcroy et al., 2014). F6’H1 mediates the ortho-hy- 
droxylation of feruloyl CoA to generate scopoletin, which, 
together with its b-glucoside scopolin, constitutes the most 
abundant coumarin in Arabidopsis (Kai et al., 2008; Döll 
et al., 2018). Subsequent studies revealed that aglycones of 
coumarins containing a catechol moiety, such as esculetin 
and fraxetin, were the dominant active compounds in 
Arabidopsis (Schmidt et al., 2014; Strehmel et al., 2014; 
Sisó-Terraza et al., 2016a). However, the final step(s) of the 
biosynthetic pathway of these compounds has not yet been 
annotated. 

The assimilation of Fe is under a surprisingly complex, 
multifaceted control, which is required to keep Fe within 
a tight cellular concentration. Similar to other key pro- 
cesses in Fe acquisition, the biosynthesis and secretion of 
coumarins is regulated by the basic helix-loop-helix 
(bHLH)-type transcription factor FIT (Ivanov et al., 
2012; Colangelo and Guerinot, 2004; Schmidt et al., 2014). 
FIT dimerizes with the subgroup Ib bHLH proteins, 
bHLH38, bHLH39, bHLH100, and bHLH101, to regulate 
its target genes (Yuan et al., 2008; Sivitz et al., 2012; Wang 
et al., 2013). The transcription of FIT and its partners is 
responsive to Fe and directly activated by three other 
bHLH proteins, bHLH34, bHLH104, and bHLH105 (Li 
et al., 2016; Zhang et al., 2015). These three proteins also 
activate the expression of POPEYE, a negative regulator 
of the Fe deficiency response (Long et al., 2010), which 
regulates a subset of genes that do not overlap with the 
FIT regulatory network. The abundance of bHLH104 
and bHLH105 is likely regulated by the Fe-binding 
hemerythrin domain-containing E3 ligase BRUTUS in a 
proteasomal-dependent manner (Long et al., 2010; Selote 
et al., 2015; Li et al., 2016; Zhang et al., 2015). Coregulation 
of all components of the reduction-based Fe uptake sys- 
tem suggests high cooperativity of the various processes. 
It is therefore reasonable to speculate that the final step(s) 
of the biosynthesis of Fe-mobilizing coumarins is part of 
the same regulon. 

Iron deficiency-induced production of Fe-mobilizing 
compounds by nongraminaceous species and their 
subsequent release into the rhizosphere has been ob- 
served over several decades (Dakora and Phillips, 2002; 
Tsai and Schmidt, 2017). Since their discovery, the role 
of root exudates in Fe acquisition was subject to a 
long-standing debate. Both reductive release of Fe from 
Fe3+ chelates and chelation of Fe3+ to provide the sub- 
strate for an unidentified ferric chelate reductase were 
suggested as functions of Fe deficiency-induced phe- 
nolic secretion (Brown and Ambler, 1973; Hether et al., 
1984; Römheld and Marschner, 1984). After the mo- 
lecular identification of the Fe chelate reductase FRO2 
in Arabidopsis (Robinson et al., 1999), the so-called 
“reductants” were considered as being of minor im- 
portance in Fe acquisition. Several aspects collectively 
led to a gross underestimation of the ecological signif- 
icance of Fe-mobilizing compounds of strategy I spe- 
cies. First, in the laboratory, plants are generally grown 
at optimal, i.e. slightly acidic pH at which the Fe ac- 
quisition machinery works most efficiently. However, 
Fe chlorosis is most frequently observed at alkaline pH, 
conditions under which FRO2 activity is compromised 
(Susín et al., 1996). As a second factor, experiments are 
mostly conducted with highly soluble sources of Fe, 
such as Fe3+ complexed by aminopolycarboxylates,  at 
concentrations that well exceed the Km of FRO2, a sit- 
uation that is not likely to occur in situ. Under such 
conditions, the activity of FRO2 is presumably rate- 
limiting for Fe uptake, which makes the contribution 
of the secretion of Fe-scavenging compounds to Fe 
uptake insignificant. 

The question as to the traits that allow calcicole plants 
to thrive on neutral or alkaline soil has puzzled plant 
biologists for more than two centuries (Link, 1789; 
Unger, 1836; Grime and Hodgson, 1968). Attempts to 
single out specific factors have been largely unsuc- 
cessful, an approach that is also hampered by the dif- 
ficulties inherent to interspecies comparisons (De Silva, 
1934; Lee, 1998; Schmidt and Fühner, 1998). The huge 
variety of the secreted substances and a lack of 
knowledge regarding the exact chemical nature and 
precise role of the secreted compounds have excluded 
targeted approaches and have rendered attempts to 
associate secreted secondary metabolites with the aut- 
ecology of species difficult. In this study, we addressed 
the biosynthesis and ecological role of Fe-mobilizing 
coumarins secreted by Fe-deficient plants. We report 
that besides the ortho-hydroxylation of feruloyl CoA by 
F6’H1, the introduction of a second hydroxyl group in 
the ortho position, a reaction catalyzed by scopoletin 
8-hydroxylase (S8H; At3g12900), is critical for produc- 
ing the Fe-mobilizing coumarin fraxetin. Scopoletin 
hydroxylation at the C8 position by At3g12900 was 
shown previously (Siwinska et al., 2018). By comparing 
diverse Arabidopsis accessions differing in the ability to 
grow on alkaline media supplemented with an immo- 
bile Fe source, we further show that the abundance of 
fraxetin in the media determines the ability to acquire 
Fe at elevated pH. 

  



 

 

 

RESULTS 

At3g12900 Is a Putative S8H 

Up-regulation of general phenylpropanoid and sco- 
poletin pathway genes upon Fe deficiency has been 
implicated with the secretion of Fe-mobilizing phenolic 
compounds, aiding in the acquisition of sparingly sol- 
uble Fe pools (Rodríguez-Celma et al., 2013; Schmidt 
et al., 2014; Fourcroy et al., 2014). Scopoletin biosyn- 
thesis and secretion are increased upon Fe starvation 
(Lan et al., 2011; Schmid et al., 2014), but the structural 
features of scopoletin do not support a function for Fe 
chelation or mobilization and rather suggest a role as an 
antimicrobial repellent or as a precursor for such a 
compound. To bind Fe efficiently, two vicinal hydroxyl 
groups are required (Mladenka et al., 2010; Schmid  
et al., 2014; Schmidt et al., 2014), implying the genera- 
tion of novel substances in response to Fe deficiency by 
extension of the scopoletin pathway. Introduction of a 
hydroxyl group can be catalyzed by 2OGDs. Referring 
to our previously published transcriptomic and pro- 
teomic data, the 2OGD At3g12900 is a promising can- 
didate for mediating this reaction (Lan et al., 2011; 
Rodríguez-Celma et al., 2013). The gene is the closest 
paralog of F6’H1, which is highly Fe-responsive and was 
shown to be essential for the generation of Fe-mobilizing 
coumarins (Rodríguez-Celma et al., 2013; Schmid et al., 
2014). F6’H1 and At3g12900 belong to the same clade 
of the 2OGD family predicted to be involved in cou- 
marin biosynthesis (Kawai et al., 2014), indicative of a 
close evolutionary and, possibly, functional relation- 
ship of the two proteins. Two adjacent hydroxyl 
groups in the ortho-position are found in Fe deficiency- 
induced coumarins secreted by Arabidopsis, such as 
fraxetin (7,8-dihydroxy-6-methoxycoumarin), which 
has been consistently detected in Fe-deficient plants 
(Schmid et al., 2014; Schmidt et al., 2014; Fourcroy   
et al., 2014; Sisó-Terraza et al., 2016a). Based on its 
function, we designated At3g12900 as S8H. Hydrox- 
ylation of scopoletin by At3g12900 has recently been 
demonstrated by heterologous expression of the pro- 
tein in Escherichia coli (Siwinska et al., 2018). 

 
 

S8H Is Crucial for Mobilizing Fe 

To elucidate the role  of  S8H  in  Fe  acquisition,  
we generated S8H overexpression (S8H Ox) lines using 
the cauliflower mosaic virus (CaMV) 35S promoter 
and obtained two independent T-DNA insertion mu- 
tants designated s8h-3 (SALK_041283) and s8h-4 
(SALK_073361), both of which harbor a tandem two- 
copy inverted T-DNA insertion in the promoter region 
(Supplemental Fig. S1). To investigate whether changes 
in the expression of S8H will affect the tolerance of 
plants to low Fe availability at circumneutral pH, the 
performance of Col-0 (wild type), s8h mutants, and S8H 
Ox lines was assessed after 14 d of growth on either 
Estelle and Somerville (ES) media supplemented with 
40 mM readily available Fe in the form of Fe3+-EDTA 

 

adjusted to pH 5.5 or unavailable Fe (navFe) media 
supplemented with insoluble Fe in the form of FeCl3 

adjusted to pH 7.0. The f6’h1-1 mutant, which is de- 
fective in the biosynthesis of scopoletin, was included 
as a negative control (Fig. 1A). When grown under 
control conditions, s8h mutants and S8H Ox lines had 
significantly more fresh weight than wild-type plants 
(Fig. 1B). Higher fresh weight relative to the wild type 
was also observed for the f6’h1-1 mutant, and increased 
growth in these lines was accompanied by a higher 
shoot Fe content (Fig. 1C), which might be due to a 
reduced demand for Fe required as a cofactor for F6’H1 
and S8H in the mutants and improved Fe uptake due to 
increased production of Fe-mobilizing compounds in 
the S8H Ox lines. When cultivated on navFe media, 
growth of wild-type plants was severely restricted and 
accompanied by a dramatic reduction in shoot Fe and 
chlorophyll content (Fig. 1, A–D). This effect was even 
more pronounced in all three mutant lines under in- 
vestigation (i.e. f6’h1-1 and the two s8h alleles). By 
contrast, S8H Ox plants performed considerably better 
on navFe media than wild-type plants. Both S8H Ox 
lines not only showed significantly higher shoot fresh 
weight, but also increased chlorophyll and Fe content 
when compared to Col-0, indicative of improved mo- 
bilization of Fe in the media (Fig. 1, B–D). These ex- 
periments show that S8H is of critical importance for 
the uptake of Fe from recalcitrant Fe pools. 

 
 

S8H Is Induced by Low Fe Availability 

To investigate the pattern and regulation of S8H ex- 
pression, we raised polyclonal antibodies against the 
synthetic peptide CGVTLEEEKMNGLMG and used the 
affinity-purified antibodies to detect S8H in protein ex- 
tracts from 14-d-old Arabidopsis seedlings by western- 
blot analysis (Fig. 2, A and B; Supplemental Fig. S2). To 
validate the antibody and to investigate the expression 
pattern of S8H, protein extracts from roots of Col-0, s8h 
mutants, and S8H Ox lines grown under control condi- 
tions were compared to extracts from shoots. Bands of the 
expected mass of approximately 40 kD were only detec- 
ted in protein extracts from roots of wild-type plants and 
s8h mutants, suggesting that S8H expression is root spe- 
cific (Fig. 2A). In S8H Ox lines, S8H was detected in 
protein extracted from both roots and shoots. Next, we 
investigated the effect of growth conditions in which Fe 
was immobilized and not readily available for uptake on 
the expression of S8H. As show in Figure 2B, S8H ex- 
pression in roots was strongly induced under navFe 
conditions in wild-type plants; a weak induction was 
observed in the s8h mutants. S8H protein abundance in 
S8H Ox lines was slightly less pronounced when plants 
were grown under navFe conditions compared to those 
grown on ES media (Fig. 2B). 

Consistent with the western-blot results, analysis of 
S8H transcript abundance by reverse transcription- 
quantitative polymerase chain reaction (RT-qPCR) 
confirmed strong induction of S8H expression in roots 
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Figure 1. Effects of Fe availability on the growth of Col-0, f6’h1-1, s8h-3, s8h-4, S8H Ox1, and S8H Ox2 plants. A, Phenotypes of 

plants grown for 14 d on either ES or navFe media. Representative images of five independent experiments are shown. Bar = 1 cm. 

B, Shoot fresh weight. C, Shoot Fe content. D, Chlorophyll content. Each bar represents the mean 6 SE of five independent ex- 

periments. Statistical testing was carried out using Student’s t test. Asterisks indicate significant differences from the wild type in 

each treatment: *, P # 0.05; **, P # 0.01; ***, P # 0.001; ****, P # 0.0001. 

 

of the wild type upon growth on navFe; an ;80% de- 
crease in S8H transcript levels was observed in both s8h 
mutants. In s8h-4, the expression level of S8H was also 
significantly (P , 0.0001) reduced relative to Col-0 
when grown on ES medium. Interestingly, in f6’h1-1 
plants, induction of S8H was much more pronounced 
by growth under navFe conditions than in Col-0, pos- 
sibly due to a lacking end-product inhibition on F6’H1 
expression. The absence of detectable S8H expression in 
the fit mutant confirmed FIT-dependent  regulation  
of S8H expression (Fig. 2C; Colangelo and Guerinot, 
2004).  S8H  Ox  lines  showed  massive  (.4,000-fold) 
constitutive induction of S8H expression when grown 
on ES media. Although mRNA levels of S8H Ox lines 
decreased when plants were grown on navFe media, 

transcript  levels  remained  .1,500-fold  higher  than  in 
the wild type (Fig. 2C). These observations are consis- 
tent with the proposed role of S8H in the biosynthesis of 
root-borne compounds secreted into the rhizosphere. 
Furthermore, the Fe-dependent and root-specific ex- 
pression of S8H is reminiscent of F6’H1 (Rodríguez- 
Celma et al., 2013; Schmid et al., 2014). Although both 
the f6’h1-1 and s8h mutants exhibited severely defective 
phenotypes when grown on navFe media, the expres- 
sion of S8H was massively increased in f6’h1-1 plants 
grown on navFe conditions (Fig. 2C). Similar to the wild 
type, expression of F6’H1 was induced in s8h mutants 
by growth on navFe media (Supplemental Fig. S3). This 
shows that induction of S8H alone is insufficient to 
rescue the f6’h1-1 mutant phenotype, suggesting that 
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Figure 2. Expression of S8H protein and transcripts. A and B, Detection of S8H in protein extracted from 14-d-old Col-0, s8h-3, 

s8h-4, S8H Ox1, and S8H Ox2 plants by western-blot analysis. Actin abundance is shown in each panel as a control for equal 

protein loading. Representative images of three independent experiments are shown. A, Total protein extracted from roots and 

shoots of plants grown on ES media. Per lane, 10 mg of total protein was loaded. B, Total protein extracted from roots of plants 

grown on either ES or navFe media. Per lane, 2.5 mg of total protein was loaded. C, RT-qPCR analysis of S8H expression in root 

samples from Col-0, fit-2, f6’h1-1, s8h-3, s8h-4, S8H Ox1, and S8H Ox2 plants grown for 14 d on either ES or navFe media. The 

DDCT method was used to determine relative gene expression, and expression of elongation factor 1 alpha was used as an internal 

control. Each bar represents the mean 6 SE of three independent experiments. Statistical testing was carried out using Student’s t 

test. Asterisks indicate significant differences from the wild type (Col-0) in each treatment: *, P # 0.05; ****, P # 0.0001. 

 

S8H and F6’H1 are both essential to plants for the 
production and secretion of Fe-mobilizing compounds 
at elevated pH. 

 
 

S8H Activity Alters the Production of 

Fluorescent Coumarins 

Autofluorescence of coumarins  has  been used  as 
a noninvasive method to detect and assess the amount 
of root-secreted Fe-mobilizing coumarins (Rodríguez- 
Celma et al., 2013; Schmid et al., 2014; Döll et al., 2018). 
To determine whether S8H is involved in the biosyn- 
thesis of coumarins, autofluorescence was observed in 
roots and root exudates of the genotypes under in-  
vestigation (Fig. 3A). The fluorescence signal was 
monitored before and after plants were removed from 
the media. As expected, under control conditions 
where Fe is available and coumarins are not required, 
no fluorescence was observed in roots or in the growth 
media of the wild type and s8h and f6’h1-1 mutants. 
Roots of S8H Ox lines grown on ES media emitted a 

weak fluorescence signal in the roots (Supplemental 
Fig. S4). Except for the f6’h1-1 mutant, fluorescence 
was dramatically increased in the roots of all other 
lines investigated when plants were grown on navFe 
media, a response that was particularly pronounced in 
the s8h mutants. Fluorescence remained detectable 
after removing plants from the media, indicative of 
secretion of the compounds. Interestingly, a markedly 
higher fluorescence relative to wild-type plants was 
detected in the media of the s8h-3 and s8h-4 mutants, 
while the S8H Ox lines produced slightly weaker 
signals than the wild type (Fig. 3A). It has been pre- 
viously shown that fluorescence of fraxetin is ex- 
ceedingly low in comparison to scopoletin and its 
derivatives (Sisó-Terraza et al., 2016a). Therefore, the 
strong fluorescence signal in the media of the s8h 
mutants could be explained by the secretion of (fluo- 
rescent) scopoletin, the hydroxylation of which is 
compromised in the mutant. In the S8H Ox lines, high 
hydroxylation rates may have led to increased secre- 
tion of nonfluorescent fraxetin and concomitant lower 
levels of scopoletin. 
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Figure 3. Accumulation of coumarins in roots and root exudates. A, Visualization of fluorescent compounds produced and 

secreted by 7-d-old plants grown vertically on navFe media. Photos were taken before (with roots) and after (no roots) removing 

plants from the media using 365 nm as the excitation wavelength. Representative images of three independent experiments are 

shown. Bar = 1 cm. B and C, Relative abundance of selected coumarin compounds in root extracts (B) and root exudates (C) of 

Col-0, f6’h1-1, s8h-3, s8h-4, S8H Ox1, and S8H Ox2 plants grown on ES and navFe media for 14 d. Bars represent the relative 

content of different coumarin compounds presented as peak area normalized to the number of roots and internal standard peak 

area. Values are mean relative coumarin content obtained from three independent experiments. D, Generation of fraxetin via 

S8H-mediated hydroxylation of scopoletin at the C8 position. 



 

 

Coumarin Profiling Designates At3g12900 as 

Scopoletin 8-Hydroxylase 

To validate the proposed function of S8H, we carried 
out a targeted-coumarin profile analysis of the meth- 
anolic extracts of the roots and media from the Col-0, 
f6’h1-1, s8h, and S8H Ox lines grown on either control 
ES or navFe media for 14 d (Fig. 3, B and C). Ultra- 
performance liquid chromatography (UPLC)/ESI- 
QTOF-MS was used to detect and measure the relative 
abundance of coumarins shown in Supplemental 
Figure S5. Peaks were compared to authentic stan- 
dards. In order to obtain a signal that can be reliably 
quantified, peaks with a signal-to-noise  ratio  below 
10 were excluded. Under control conditions, the major 
coumarins detected in roots of wild-type plants were 
scopolin and, to a lesser extent, its corresponding 
aglycone scopoletin (Fig. 3B). Growing the plants under 
navFe conditions caused a relatively small increase in 
scopolin and doubled the scopoletin level. Fraxin and 
its aglycone fraxetin were detected in amounts com- 
parable to scopolin/scopoletin, together constituting 
the major Fe deficiency-inducible coumarins. Under 
control conditions, the composition and amounts of 
coumarins in the s8h mutants did not deviate greatly 
from the wild type. When grown on navFe media, the 
biosynthesis of both scopolin and scopoletin was mas- 
sively induced in the mutants. Fraxin and fraxetin 
levels were lower in both mutants than in the wild type, 
but clearly detectable, probably due to residual gene 
activity in the knockdown mutants. In S8H Ox lines, the 
amount of scopolin/scopoletin was markedly reduced 
relative to Col-0, and the major coumarins were fraxin 
and its aglycone fraxetin. No major differences between 
the two Fe regimes were observed for the S8H Ox lines 
except for a slightly reduced fraxin and fraxetin pro- 
duction under navFe conditions. As anticipated, no 
coumarins were produced in f6’h1-1 plants. In sum- 
mary, consistent with the proposed function of S8H as a 
scopoletin 8-hydroxylase, S8H activity appears to me- 
diate the biosynthesis of the fraxetin/fraxin pair at the 
expense of scopoletin and scopolin. 

Regarding the exudates, no coumarins were detected 
in the media of Col-0 under control conditions; fraxetin 
was the predominant secreted compound under navFe 
condition (Fig. 3C). Smaller amounts of scopoletin, 
esculetin, and isofraxidin/fraxinol were also detected 
in the wild type. Similar to Col-0, no coumarins were 
detected in the root exudate of the s8h mutants under 
control conditions. As anticipated from the decreased 
activity of S8H, Fe-deficient s8h mutants secreted sig- 
nificantly more scopoletin and less fraxetin than the 
wild type. The high amount of scopoletin corresponds 
to the bright fluorescence detected in the media of these 
mutants (Fig. 3A). Increased levels of scopoletin in the 
s8h mutant growth media are consistent with previous 
reports (Siwinska et al., 2018). Intriguingly, under 
control conditions, S8H Ox lines secreted exclusively 
fraxetin. When grown on navFe media, S8H Ox lines 
secreted more fraxetin than Col-0. Isofraxidin/fraxinol 

 
and esculetin were also secreted into the media. This ob- 
servation can be explained by the up-regulation of the 
general phenylpropanoid pathway and strong induction 
of F6’H1 under Fe-deficient conditions. Together, these 
observations suggest that S8H hydroxylates scopoletin at 
the C8 position to generate fraxetin, the aglycone of the 
storage form fraxin, at the expense of scopoletin and 
scopolin (Fig. 3D). Although theoretically scopoletin can 
be hydroxylated at C5, data from Siwinska et al. (2018) 
strongly support that S8H catalyzes C8 hydroxylation of 
scopoletin. Only coumarin aglycones were secreted into 
the media, supporting a scenario in which the sugar 
moiety of glycosylated coumarins is removed prior to 
secretion (Le Roy et al., 2016). 

 
 

Fraxetin Supplementation Complements the Phenotypes of 

the f6’h1-1 and s8h Mutants 

To demonstrate that fraxetin is the active compound 
participating in the acquisition of Fe at elevated pH, we 
investigated the growth of the s8h mutants in navFe 
media supplemented with fraxetin. The phenotypes of 
the f6’h1-1, s8h-3, and s8h-4 mutants were assessed after 
14 d of growth. The synthetic Fe chelator EDTA and 
scopoletin were added to the media as positive and 
negative controls, respectively. Growth and shoot Fe 
and chlorophyll content were dramatically increased in 
all three mutants by adding fraxetin to the media (Fig. 4, 
A–D). For example, chlorophyll content was increased 
by ;30-fold in the presence of fraxetin when compared 
to the mock treatment. Addition of EDTA had minor 
and inconsistent effects on growth and Fe content; 
scopoletin did not improve growth of any of the tested 
lines. These observations suggest that fraxetin is a bio- 
active compound in the acquisition of immobile Fe. 

 

Fraxetin Extends the pH Range of Fe Chelate Reduction 

Chelation of sparingly soluble Fe is an unequivocal 
function of catechol-type coumarins and was previ- 
ously demonstrated (Mladenka et al., 2010; Schmid  
et al., 2014; Sisó-Terraza et al., 2016a). Reduction of Fe3+ 
by secreted coumarins remains more ambiguous. 
Fraxetin was shown to reductively mobilize Fe from Fe3+ 
oxide at neutral pH (Sisó-Terraza et al., 2016a). Under the 
present conditions, ferric chelate reduction by fraxetin 
was significantly more efficient at pH 7.0 when com- 
pared to pH 5.5 (Fig. 4F). This stands in contrast to the pH 
dependence of root-mediated ferric chelate reduction. 
Col-0 precultivated for 10 d and subsequently grown on 
ES, 2Fe (ES with no Fe3+-EDTA, containing 100 mM fer- 
rozine), or navFe conditions for 3 d was assayed at pH 5.5 
and 7.0. At pH 5.5, root ferric-chelate reductase (FCR) 
activity of Fe-deficient and navFe-treated plants was 
strongly induced relative to Fe-sufficient plants. How- 
ever, this induction was significantly decreased when 
the pH of the assay was buffered at pH 7.0. Further- 
more, it was shown that the FCR of plants treated with 
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Figure 4. Rescue of mutants by exogenous application of fraxetin in navFe media. A, Phenotypes of f6’h1-1, s8h-3, and 

s8h-4 mutants grown for 14 d on navFe media supplemented with 120 mM of either EDTA, scopoletin, or fraxetin. Rep- 

resentative images from three independent experiments are shown. Bar = 1 cm. B, Shoot fresh weight. C, Shoot Fe content. 

D, Chlorophyll content. Each bar represents the mean 6 SE of three independent experiments. Statistical testing was carried 

out using Student’s t test. Asterisks indicate significant differences from the mock treatment for each mutant: *, P # 0.05; 

**, P # 0.01; ***, P # 0.001; ****, P # 0.0001. E and F, FCR activity of roots (E) and fraxetin (F) was assayed at pH 5.5 (MES) 

and 7.0 (MOPS). Col-0 plants were precultivated in ES media for 10 d and transferred to either ES, 2Fe (ES with no Fe3+- 

EDTA, containing 100 mM ferrozine), or navFe media for 3 d before conducting the FCR assay. For measuring Fe3+ reduction 

by  coumarin compounds, 100 mM  of  either fraxetin or  scopoletin was added in  the FCR assay instead of  roots and 



 

 

 
navFe condition is much lower than that of plants 
treated with –Fe condition (Fig. 4F). This observation 
confirms the previously reported mildly acidic pH op- 
timum of FRO2-mediated Fe chelate reduction 
(Römheld and Marschner, 1984; Susín et al., 1996). It 
thus appears that secretion of fraxetin extends the pH 
range of efficient Fe3+ reduction, thereby reducing the 
sensitivity of plants to neutral or alkaline conditions. 

 

Fraxetin Determines the Efficiency of Fe Uptake from an 

Immobile Fe Source 

To investigate whether secretion of fraxetin deter- 
mines Fe uptake from immobilized Fe pools and the 
performance of the plant at circumneutral pH, we in- 
vestigated the growth of 22 Arabidopsis accessions, 
selected for their differing growth response to navFe 
media (Supplemental Fig. S6). Since the secretion of 
fraxetin can be affected by both production and secre- 
tion rates, determination of fraxetin was chosen over 
quantification of transcript or protein abundance to 
determine its contribution to the calcicole-calcifuge 
behavior of the various accessions. The selected acces- 
sions differed widely in their rosette growth and shoot 
Fe and chlorophyll content (Supplemental Fig. S6). The 
amount of fraxetin in the media was highly correlated 
with these three parameters, with the highest correla- 
tion being observed between fraxetin and shoot Fe 
content (Fig. 5). This shows that fraxetin secretion is a 
decisive and growth-restricting parameter for Fe up- 
take from immobile Fe pools, which putatively defines 
the amplitude of requirements for successful estab- 
lishment of a genotype to a given set of edaphic pa- 
rameters. 

 

DISCUSSION 

While secretion of Fe-mobilizing compounds has 
been acknowledged as part of the Fe deficiency re- 
sponse of strategy I plants for several decades, their 
biosynthesis, ecological significance, and specific role in 
Fe acquisition have just begun to be elucidated. Con- 
gruous with a recent study (Siwinska et al., 2018), we 
show here that the 2OGD S8H is a critical component in 
the synthesis of fraxetin, a coumarin with a catechol 
moiety and a methoxy substituent derived from sco- 
poletin. While mutants with partial loss of S8H activity 
were more severely impacted when grown on media 
that restrict the solubility of Fe than wild-type plants, 
transgenic plants overexpressing S8H showed better 
performance and had higher Fe and chlorophyll con- 
tent than the wild type under these conditions. 

 
Targeted analysis of coumarins secreted by s8h mutants 
and S8H Ox lines demonstrated that At3g12900 is a 
scopoletin 8-hydroxylase, a function that has been 
validated recently for this protein based on biochemical 
evidences (Siwinska et al., 2018). Fraxetin, but not its 
precursor scopoletin, was able to ameliorate the phe- 
notypes of s8h and f6’h1 mutant plants grown on navFe 
media, indicating that fraxetin is necessary and suffi- 
cient to mobilize Fe from immobile sources at circum- 
neutral pH. We further show that fraxetin can reduce 
Fe3+, a property that was more pronounced at neutral 
pH conditions where the activity of the FRO2/IRT1- 
dependent Fe uptake system is compromised. Impor- 
tantly, fraxetin is not only able to reduce Fe3+ in synthetic 
chelates, but also in Fe3+ oxides (Sisó-Terraza et al., 
2016a), which is the form Fe is likely to be present in 
neutral or alkaline soils. However, the FRO2/IRT1 
system still appears to be required, since fro2 and irt1 
mutants are not rescued by root exudates from the wild 
type (Fourcroy et al., 2016). Most importantly, we show 
here that the amount of secreted fraxetin is tightly 
correlated with the growth and Fe and chlorophyll 
content of accessions differing in their ability to thrive 
on media with low Fe availability. Thus, the rate of 
fraxetin secretion appears to constitute a decisive, ge- 
netically determined factor for the calcicole/calcifuge 
behavior of a genotype. 

While alkaline pH triggers a partial Fe-deficiency re- 
sponse also in the presence of Fe (Sisó-Terraza et al., 
2016a), it appears that the balance between the two 
phenotypic readouts, i.e. root-mediated reduction 
and fraxetin secretion, is tipped by an additional, 
pH-dependent control mechanism. High media pH 
values shift the allocation of energetic and metabolic re- 
sources toward the biosynthesis and secretion of Fe-
mobilizing compounds, a strategy that is more im- 
portant at alkaline pH than enzymatic Fe reduction be- 
cause of decreased substrate concentration for the 
reductase. Secretion of fraxetin remains low at acidic pH 
even under conditions of  Fe  deficiency  (Sisó-Terraza 
et al., 2016a). Moreover, both reduction and mobilization 
of Fe by fraxetin is more efficient at neutral or alkaline pH 
(this study; Sisó-Terraza et al., 2016a); the pronounced 
(;30-fold) stimulation of fraxetin secretion caused by a 
pH shift from 5.5 to 7.5 (Sisó-Terraza et al., 2016a) and a 
similarly pronounced decrease in enzymatic Fe3+ reduc- 
tion supports that pH induces an “efficiency control” on 
the response to Fe deficiency. Such a regulatory node 
may be provided by processing of glycosylated couma- 
rins prior to secretion. PDR9-mediated secretion of cou- 
marins is dependent on the activity of the b-glucosidase 
BGLU42; Fe-deficient bglu42 mutant plants do not secrete 
coumarins (Zamioudis et al., 2014). This inhibition is 

 
 
 

 

Figure 4. (Continued.) 

normalized to blanks with DMSO. Each bar represents the mean 6 SE of three independent experiments. Statistical testing 

was carried out using Student’s t test. Asterisks indicate significant differences from the assay buffered at pH 5.5: *, P # 0.05; 

**, P # 0.01; ***, P # 0.001. 
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Figure 5. Correlation analysis between the growth performance and the relative fraxetin content in 22 different Arabidopsis 

accessions. Plants were grown on navFe media for 14 d. Linear regression analysis was carried out by plotting shoot fresh weight 

(A), shoot Fe content (B), and chlorophyll content (C) of each accession against their relative fraxetin content. 

 

thought to be due to compromised removal of the sugar 
moiety of glycosylated coumarins, a necessary step prior 
to secretion. Expression of BGLU42 is dependent on the 
MYB-type transcription factors MYB10 and MYB72, di- 
rect targets of FIT (Palmer et al., 2013). BGLU42 expression 
is misregulated in myb72 myb10 double mutants, which 
are sensitive to growth under alkaline conditions (Palmer 
et al., 2013). Expression of MYB72 is affected by beneficial 
soil bacteria, suggesting that MYB72 provides a gate for 
additional signals derived from the induced systemic re- 
sistance pathway (Zamioudis et al., 2014). However, how 
pH is sensed and alters the secretion rate of coumarins 
remains to be elucidated. 

While habitat requirements and ecological fitness are 
complex traits that are defined by a multitude of factors, 
research into the factors that confer calcicole behavior 
has identified the ability to acquire Fe as a key deter- 
minant for the efficient establishment of a genotype on 

calcareous sites (Zohlen and Tyler, 2000, 2004; von 
Wandruszka, 2006). Up to 40% of photosynthetically 
fixed carbon is secreted into the rhizosphere (Whipps, 
1990; Marschner, 1995), a costly strategy with many 
facets. Root exudates can act as chemical attractants or 
repellants, influence the growth of competing plant 
species, and change the chemical and physical properties 
of the soil (Nardi et al., 2000). The role of root exudates in 
the acquisition of mineral nutrients and successful es- 
tablishment to a given set of soil conditions remains 
understudied. In Arabidopsis, fraxetin appears to be the 
most prominent and most robustly detected coumarin 
secreted by Fe-deficient plants (this study; Schmidt et al., 
2014; Fourcroy et al., 2014; Sisó-Terraza et al., 2016a). 
Given the diversity of secondary metabolites, other 
species-dependent substances with similar features may 
extend the list of putative Fe-mobilizing compounds. An 
example for a genus- or genera-dependent strategy is the 

 



 

 
secretion of riboflavin sulfates by Fe-deficient sugar beet 
(Beta vulgaris) roots, which was suggested to provide a 
redox shuttle between intracellular reducing equivalents 
and soil Fe3+ compounds (Sisó-Terraza et al., 2016b). It 
should also be noted that S8H may be important for the 
biosynthesis of other putative Fe-mobilizing compounds 
downstream of fraxetin. An example is hydroxyfraxetin, 
which was shown to accumulate upon Fe deficiency 
(Ziegler et al., 2017). This investigation emphasizes the 
possibly underrated importance of root exudates for 
defining habitat requirements. Systematic approaches to 
catalog changes in rates and composition of secreted 
compounds in response to limitations of a particular 
mineral nutrient have been hampered by the complexity 
of such analyses and the general difficulties of compar- 
ing species that differ in a multitude of aspects such as 
root architecture, growth pattern, resource allocation, or 
reproductive strategies. The wide geographical distri- 
bution of Arabidopsis accessions and the concomitant 
adaptation of secondary metabolism to a given set of 
environmental conditions set the stage to link the com- 
position of root exudates with habitat requirements. 

 
 

MATERIALS AND METHODS 

Plant Materials 

Arabidopsis (Arabidopsis thaliana) mutants and transgenic lines used in this 

study are in the Col-0 background. Seeds of the accession Col-0 and the T-DNA 

insertion mutants s8h-3 (SALK_041283), s8h-4 (SALK_073361), and f6’h1-1 

(SALK_132418C) were obtained from the Arabidopsis Biological Resource 

Center (Ohio State University). Homozygous s8h-3 and s8h-4 T-DNA mutants 

were selected from PCR-based genotyping, and the positions of the T-DNA 

insertions were mapped by sequencing using primers shown in Supplemental 

Table  S1.  Seeds  of  the  fit-2  mutant  (SALK_126020)  were  provided  by 

Dr. Catherine Curie (INRA Montpellier, France). The fit-2 and f6’h1-1 mutants 

were characterized previously (Sivitz et al., 2011; Kai et al., 2008). 

For the generation of S8H Ox lines, the full-length At3g12900 cDNA was 

amplified from Arabidopsis root cDNA using the primers indicated in 

Supplemental Table S1, followed by gel purification and cloning into the BamHI- 

digested and dephosphorylated expression vector pROK2 containing the CaMV 

35S promoter. The final construct was verified by sequencing. Agrobacterium 

tumefaciens-mediated transformation was used to transform wild-type plants 

(Col-0). Transformants were selected based on kanamycin resistance. Plants with 

a single insertion of the transgene were selected for self-pollination to generate T3 

homozygous lines for further analysis. Overexpression of S8H in the transgenic 

plants was confirmed by RT-qPCR and western-blot analyses. 

The Arabidopsis accessions used in this study were either purchased from the 

Arabidopsis Biological Resource Center or were provided by Dr. Paul E. Verslues 

(Institute of Plant and Microbial Biology, Academia Sinica, Taiwan). 

 

Growth Conditions 

Arabidopsis plants were grown under sterile conditions in a growth chamber 

on agar-based media as described by Estelle and Somerville (1987). Seeds were 

surface-sterilized by immersing in 30% (v/v) commercial bleach containing 6% 

NaClO (Clorox) and 70% (v/v) absolute ethanol containing 0.1% (v/v) Tween 

20 for 6 min, followed by three rinses with absolute ethanol. Seeds were sown 

on petri dishes and kept for 2 d at 4°C in the dark before the plates were 

transferred to a growth chamber and grown at 21°C under continuous illumi- 

nation (50 mmol m22 s22). The growth medium comprised 5 mM KNO3, 2 mM 

MgSO4, 2 mM Ca(NO3)2, 2.5 mM KH2PO4, 70 mM  H3BO3, 14 mM  MnCl2, 1 mM 

ZnSO4, 0.5 mM CuSO4, 0.01 mM CoCl2, and 0.2 mM Na2MoO4, supplemented with 

1.5% (w/v) Suc, and solidified with 0.4% Gelrite pure (Kelco). For control ES 

media, 40 mM Fe3+-EDTA and 1 g/L MES were added and the pH was adjusted 

to 5.5 with KOH. For navFe media, 40 mM FeCl3 and 1 g/L MOPS were added 

 

 
and pH was adjusted to 7.0 with KOH. Unless stated otherwise, plants were 

grown directly on media for 14 d. 

 

Protein Extraction and Western-Blot Analysis 

Total protein was extracted from frozen root and shoot samples using glass 

beads in a TissueLyzer II (Qiagen) with 150 mL of extraction buffer (100 mM Tris- 

HCl, pH 7.4, 4% SDS, 200 mM DTT, 23 protease inhibitor cocktail, and 1 mM 

PMSF). The slurry was kept on ice for 10 min (vortexed every 2 min) before 

centrifugation at 13,200 rpm for 15 min at 4°C. The supernatant was collected 

and protein concentration was determined using the Pierce 660 nm Protein 

Assay Kit in the presence of 50 mM Ionic Detergent Compatible Reagent 

(Thermo Fisher Scientific). Equal amounts of total protein were heated at 100°C 

for 10 min in a solution containing 13 NuPAGE LDS sample buffer and 13 

NuPAGE sample reducing agent prior to separation on NuPAGE 4-12% Bis- 

Tris Gels with NuPAGE MES SDS Running buffer (Invitrogen) at 200 V for 

55 min using the XCell SureLock Mini Cell electrophoresis system (Life Tech- 

nologies). Proteins were then transferred onto PVDF membranes (Bio-Rad) 

using the Trans-Blot Turbo Transfer System (Bio-Rad). Membranes were 

blocked in 13 NAP-Blocker in TBS solution (G-Biosciences) for 1 h before 

sequential probing with primary and secondary antibodies. Polyclonal 

anti-S8H antibody was raised in rabbits against the synthetic peptide 

CGVTLEEEKMNGLMG (generated by Genscript). Membranes were incubated 

with anti-S8H antibody diluted 1:2,000 in blocking buffer for 3 h and then the 

secondary antibody at a 1:10,000 dilution (GE Healthcare; NA934-100UL) for 

45 min at room temperature. The membranes were washed three times using 

13 PBS (Invitrogen; AM9625) with 0.5% Tween 20 and the signal detection was 

performed using Pierce ECL western Blotting Substrate (Thermo Fisher Scien- 

tific). Monoclonal antiactin (plant) antibody was used as a loading control 

(Sigma-Aldrich; A0480). The antiactin (plant) antibody diluted 1:4,000 was in- 

cubated for 45 min at room temperature followed by the secondary antibody 

(GE Healthcare; NA931-1ML) at a 1:10,000 dilution incubated for 45 min at 

room temperature. 

 

RNA Extraction and Reverse Transcription 

Quantitative PCR 

Total RNA was isolated from root samples using the RNeasy mini kit 

(Qiagen) and treated with DNase using the TURBO DNA-free kit (Ambion) 

according to the manufacturer’s instructions. Nucleic acid concentration was 

determined with a NanoDrop ND-1000 UV-Vis spectrophotometer (NanoDrop 

Technologies). First-strand cDNA was synthesized from equal amounts of 

DNA-free RNA using oligo(dT) primer and Superscript II reverse transcriptase 

(Invitrogen) as indicated by the manufacturer. The first-strand cDNA was used 

as a template for RT-qPCR in a 25-mL reaction mix using the SYBR Green PCR 

Master Mix (Applied Biosystems) with programs recommended by the man- 

ufacturer in the QuantStudio 12K Flex Real-Time PCR System (Applied Bio- 

systems). Three independent replicates were performed for each sample. The 

DDCT method was used to determine the relative gene expression (Livak and 

Schmittgen, 2001), with the expression of elongation factor 1 alpha (EF1a; 

At5g60390) used as an internal control. Primers used for RT-qPCR analyses are 

given in Supplemental Table S1. 

 
Chlorophyll Content 

Chlorophyll was extracted and measured following a protocol from Abadía 

and Abadía (1993), with some modifications. The equation used to calculate 

chlorophyll concentrations is described by Lichtenthaler (1987). Frozen shoot 

samples (five per sample) were disrupted using stainless steel beads in a Tis- 

sueLyzer II (Qiagen). Chlorophyll was extracted with 500 mL 80% (v/v) acetone 

in a TissueLyzer II, centrifuged, and the supernatant was collected in Eppendorf 

tubes. Extraction was carried out two more times and extracts were pooled to 

give a total volume of 1.5 mL. Absorbance was measured at 663-, 647-, and 

750-nm wavelengths in a PowerWave XS2 microplate spectrophotometer 

(BioTek). Absorbance at 663 and 647 nm was corrected for scattering with the 

750-nm absorbance measurements. 

 
Shoot Fe Content 

Total Fe in shoots was determined by the BPDS method described by Pan 

et al. (2015), with slight modifications. Shoot samples (20 plants per sample) 
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were dried in an oven at 50°C for 2 d and incubated in 225 ml of 65% (v/v) nitric 
acid (HNO3) at 96°C for 6 h, followed by 150 mL of 30% (v/v) H2O2 at 56°C for 

2 h. Dilution of each sample was made by the addition of 225 mL of sterile water. 

Samples were mixed in assay solution that contained 1 mM BPDS, 0.6 M sodi- 

um acetate, and 0.48 M hydroxylamine hydrochloride. The concentration of 

Fe2+-BPDS3 complexes were measured by A535 in a PowerWave XS2 microplate 

spectrophotometer (BioTek). Fe concentrations were determined against a 

standard curve made with FeCl3 that was treated in the same way as the 

plant materials. 

 

Detection of Fluorescent Compounds in Roots and Media 

The accumulation of fluorescent compounds was visualized in the Bio- 

Spectrum 600 imaging system (UVP). Photographs were taken before and after 

removing plants from the growth media using 365 nm as the excitation 

wavelength, SYBR Gold 485 to 655 nm as the emission filter, and 9 s as the 

exposure time. 

 
Collection of Methanolic Extracts from Roots and 

Growth Media 

To extract coumarins from Arabidopsis roots, samples (20 roots per sample) 

were pulverized using stainless steel beads in a TissueLyzer II (Qiagen) and 

500 mL of 80% (v/v) methanol containing 0.5 ppm 4-methylumbelliferone as an 

internal standard. The extracts were centrifuged and supernatant was collected 

in Eppendorf tubes. Extraction was carried out one more time, and extracts 

were pooled to give a total volume of 1 mL. To extract root exudates from 

growth media, media were dried in an oven at 50°C for 2 d and extraction was 

done by incubating the media in 10 mL of 80% (v/v) methanol containing 0.1 

ppm 4-methylumbelliferone as an internal standard for 30 min. The extract was 

collected and extraction was repeated twice. Extracts were pooled to give a total 

volume of 30 mL. Samples were centrifuged at 13,200 rpm for 10 min before 

transferring into appropriate vials for further analysis. 

 
Targeted Coumarin Profile Analysis 

Coumarins were analyzed following a protocol adapted from Schmid et al. 

(2014). UPLC-QTOF-MS analysis was performed on an Acquity UPLC system 

(Waters) and a SYNAPT G2 high-definition mass spectrometry system (Waters) 

with an electrospray ionization interface, ion mobility, and time-of-flight sys- 

tem. Samples were separated on an Acquity BEH phenyl column (100 mm 3 

2.1 mm, 1.7 mm; Waters). The column temperature was set to 35°C. The mobile 

phase consisted of 0.1% (v/v) formic acid in 2% (v/v) acetonitrile (solution A) 

and 0.1% (v/v) formic acid in 100% acetonitrile (solution B). The gradient du- 

ration was 13 min at a flow rate of 0.4 mL/min. The elution gradient was as 

follows: starting with 1% B for 1 min, 1 to 99% B within 10 min, holding at 99% B 

for 0.5 min, 99 to 1% B in 0.01 min, and then holding at 1% B for another 

1.49 min. The injected volume was 5 mL. Spectra were collected in the positive 

ionization (ES+) mode. The electrospray capillary voltage was set to 3 kV and 

the cone voltage was set to 30 V. The source and desolvation temperatures were 

80°C and 350°C, respectively. The desolvation and cone gas flow rates were 

700 and 20 L/h, respectively. A lock mass calibration of Leu encephalin at a 

concentration of 1 ppm in water:methanol (50:50, v/v) was infused at a flow 

rate of 10 mL/min via a lock spray. The MS range acquired was 50 to 1,200 m/z 

with 0.2 s/scan in the centroid mode. For data analysis, the acquired mass data 

were imported to Markerlynx (Waters) within the Masslynx software (version 

4.1) for peak detection and alignment. The retention time and m/z data for each 

peak were determined by the software and compared to authentic standards. 

Coumarin compounds studied are indicated in Supplemental Figure S5. Data 

were processed using TargetLynx application package within the MassLynx 

software (Waters). Relative coumarin levels were quantified by normalizing the 

metabolite peak area to the internal standard peak area and the number of roots. 

Peaks with a signal-to-noise ratio below 10 were excluded. 

 
Determination of Root and Fraxetin FCR Activity 

For the root FCR experiment, plants were precultivated for 10 d in ES media 

and then transferred to either ES, navFe, or –Fe (ES with no Fe3+-EDTA, 

containing 100 mM ferrozine) media for 3 d. The protocol for measuring root 

FCR activity was adapted from Grillet et al. (2014). Whole-root systems from 

five Arabidopsis plants were excised, rinsed with either 10 mM MES (pH 5.5) 

or MOPS (pH 7.0) buffer solution, and incubated in 2 mL of assay solution 

with shaking in the dark for 1 h. The assay solution was buffered at pH 5.5 

(with 10 mM MES) or pH 7.0 (with 10 mM MOPS), containing 300 mM BPDS and 

100 mM Fe3+-EDTA. Blanks without roots were included to correct for any FCR 

activity not attributable to roots. The concentration of Fe2+-BPDS3 complexes 

was measured by A535 in a PowerWave XS2 microplate spectrophotometer 

(BioTek). A standard curve was prepared by dilution of a stock FeSO4 solu- 

tion. The FCR activity of fraxetin and scopoletin dissolved in DMSO was 

measured in similar ways as described above. Instead of incubating root 

samples, 100 mM fraxetin and scopoletin was added. Blanks including DMSO 

were included to correct for any FCR activity not associated to the tested 

compounds. 

 

Accession Numbers 

Arabidopsis Genome Initiative locus identifiers for the genes mentioned in 

this article are as follows: S8H, At3g12900; F6’H1, At3g13610; FIT, At2g28160; 

FRO2, At1g01580; and IRT1, At4g19690. 

 

Supplemental Data 

The following supplemental materials are available. 

Supplemental Figure S1. T-DNA insertion alleles of s8h. 

Supplemental Figure S2. Full scans of western blots. 

Supplemental Figure S3. F6’H1 transcript levels. 

Supplemental Figure S4. Visualization of fluorescent compounds. 

Supplemental Figure S5. Structures of coumarin compounds. 

Supplemental Figure S6. Effects of Fe availability on the growth of 22 Ara- 

bidopsis accessions. 

Supplemental Table S1. Primers used in this study. 
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