435 research outputs found

    Fano threefolds of large Fano index and large degree

    Full text link
    We classify Q-Fano threefolds of Fano index > 2 and big degree.Comment: 38 page

    Grothendieck ring of varieties, D- and L-equivalence, and families of quadrics

    Get PDF
    We discuss a conjecture saying that derived equivalence of smooth projective simply connected varieties implies that the difference of their classes in the Grothendieck ring of varieties is annihilated by a power of the affine line class. We support the conjecture with a number of known examples, and one new example. We consider a smooth complete intersection X of three quadrics in P5 and the corresponding double cover Y→P2 branched over a sextic curve. We show that as soon as the natural Brauer class on Y vanishes, so that X and Y are derived equivalent, the difference [X]−[Y] is annihilated by the affine line class

    Wild turkey biology and habitat management in Missouri (2017)

    No full text
    Not much more than a half century ago, Missouri's wild turkey population was in danger of disappearing from the landscape. By the early 1950s, it was estimated that fewer than 2,500 turkeys were left in only 14 Missouri counties. Their restoration is one of the state's great conservation success stories. Many private landowners in Missouri are interested in creating and maintaining habitat for wild turkeys. This guide provides recommendations for doing just that. Before learning about specific habitat management practices, it is important to build basic knowledge about turkey biology, population dynamics and habitat needs. This broader information will help landowners and managers better understand the value of implementing specific habitat management practices

    Chemically Modified Oligonucleotides Modulate an Epigenetically Varied and Transient Form of Transcription Silencing of HIV-1 in Human Cells

    Get PDF
    Small noncoding RNAs (ncRNAs) have been shown to guide epigenetic silencing complexes to target loci in human cells. When targeted to gene promoters, these small RNAs can lead to long-term stable epigenetic silencing of gene transcription. To date, small RNAs have been shown to modulate transcriptional gene silencing (TGS) of human immunodeficiency virus type 1 (HIV-1) as well as several other disease-related genes, but it has remained unknown as to what extent particular chemistries can be used to generate single-stranded backbone-modified oligonucleotides that are amenable to this form of gene targeting and regulation. Here, we present data indicating that specific combinations of backbone modifications can be used to generate single-stranded antisense oligonucleotides that can functionally direct TGS of HIV-1 in a manner that is however, independent of epigenetic changes at the target loci. Furthermore, this functionality appears contingent on the absence of a 5′ phosphate in the oligonucleotide. These data suggest that chemically modified oligonucleotide based approaches could be implemented as a means to regulate gene transcription in an epigenetically independent manner

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Classification of singular Q-homology planes. I. Structure and singularities

    Full text link
    A Q-homology plane is a normal complex algebraic surface having trivial rational homology. We obtain a structure theorem for Q-homology planes with smooth locus of non-general type. We show that if a Q-homology plane contains a non-quotient singularity then it is a quotient of an affine cone over a projective curve by an action of a finite group respecting the set of lines through the vertex. In particular, it is contractible, has negative Kodaira dimension and only one singular point. We describe minimal normal completions of such planes.Comment: improved results from Ph.D. thesis (University of Warsaw, 2009), 25 pages, to appear in Israel J. Mat

    The Role of EZH2 in the Regulation of the Activity of Matrix Metalloproteinases in Prostate Cancer Cells

    Get PDF
    Degradation of the extracellular matrix (ECM), a critical step in cancer metastasis, is determined by the balance between MMPs (matrix metalloproteinases) and their inhibitors TIMPs (tissue inhibitors of metalloproteinases). In cancer cells, this balance is shifted towards MMPs, promoting ECM degradation. Here, we show that EZH2 plays an active role in this process by repressing the expression of TIMP2 and TIMP3 in prostate cancer cells. The TIMP genes are derepressed by knockdown of EZH2 expression in human prostate cancer cells but repressed by overexpression of EZH2 in benign human prostate epithelial cells. EZH2 catalyzes H3K27 trimethylation and subsequent DNA methylation of the TIMP gene promoters. Overexpression of EZH2 confers an invasive phenotype on benign prostate epithelial cells; however, this phenotype is suppressed by cooverexpression of TIMP3. EZH2 knockdown markedly reduces the proteolytic activity of MMP-9, thereby decreasing the invasive activity of prostate cancer cells. These results suggest that the transcriptional repression of the TIMP genes by EZH2 may be a major mechanism to shift the MMPs/TIMPs balance in favor of MMP activity and thus to promote ECM degradation and subsequent invasion of prostate cancer cells

    Diurnal Variations of Mouse Plasma and Hepatic Bile Acid Concentrations as well as Expression of Biosynthetic Enzymes and Transporters

    Get PDF
    Diurnal fluctuation of bile acid (BA) concentrations in the enterohepatic system of mammals has been known for a long time. Recently, BAs have been recognized as signaling molecules beyond their well-established roles in dietary lipid absorption and cholesterol homeostasis.The current study depicted diurnal variations of individual BAs detected by ultra-performance liquid chromatography/mass spectrometry (UPLC/MS) in serum and livers collected from C57BL/6 mice fed a regular chow or a chow containing cholestyramine (resin). Circadian rhythms of mRNA of vital BA-related nuclear receptors, enzymes, and transporters in livers and ilea were determined in control- and resin-fed mice, as well as in farnesoid X receptor (FXR) null mice. The circadian profiles of BAs showed enhanced bacterial dehydroxylation during the fasting phase and efficient hepatic reconjugation of BAs in the fed phase. The resin removed more than 90% of BAs with β-hydroxy groups, such as muricholic acids and ursodeoxycholic acid, from serum and livers, but did not exert as significant influence on CA and CDCA in both compartments. Both resin-fed and FXR-null mouse models indicate that BAs regulate their own biosynthesis through the FXR-regulated ileal fibroblast growth factor 15. BA flux also influences the daily mRNA levels of multiple BA transporters.BA concentration and composition exhibit circadian variations in mouse liver and serum, which influences the circadian rhythms of BA metabolizing genes in liver and ileum. The diurnal variations of BAs appear to serve as a signal that coordinates daily nutrient metabolism in mammals

    Chitosan Modification of Adenovirus to Modify Transfection Efficiency in Bovine Corneal Epithelial Cells

    Get PDF
    BACKGROUND: The purpose of this study is to modulate the transfection efficiency of adenovirus (Ad) on the cornea by the covalent attachment of chitosan on adenoviral capsids via a thioether linkage between chitosan modified with 2-iminothiolane and Ad cross-linked with N-[gamma-maleimidobutyryloxy]succinimide ester (GMBS). METHODOLOGY/PRINCIPAL FINDINGS: Modified Ad was obtained by reaction with the heterobifunctional crosslinking reagent, GMBS, producing maleimide-modified Ad (Ad-GMBS). Then, the chitosan-SH was conjugated to Ad-GMBS via a thioether bond at different ratios of Ad to GMBS to chitosan-SH. The sizes and zeta potentials of unmodified Ad and chitosan-modified Ads were measured, and the morphologies of the virus particles were observed under transmission electron microscope. Primary cultures of bovine corneal epithelial cells were transfected with Ads and chitosan-modified Ads in the absence or presence of anti-adenovirus antibodies. Chitosan modification did not significantly change the particle size of Ad, but the surface charge of Ad increased significantly from -24.3 mV to nearly neutral. Furthermore, primary cultures of bovine corneal epithelial cells were transfected with Ad or chitosan-modified Ad in the absence or presence of anti-Ad antibodies. The transfection efficiency was attenuated gradually with increasing amounts of GMBS. However, incorporation of chitosan partly restored transfection activity and rendered the modified antibody resistant to antibody neutralization. CONCLUSIONS/SIGNIFICANCE: Chitosan can provide a platform for chemical modification of Ad, which offers potential for further in vivo applications
    corecore