4,929 research outputs found

    Shape Invariant Coding of Motion Direction in Somatosensory Cortex

    Get PDF
    A subpopulation of neurons in primate somatosensory cortex signal the direction in which objects move across the skin of the fingertips

    Towards Making Videos Accessible for Low Vision Screen Magnifier Users

    Get PDF
    People with low vision who use screen magnifiers to interact with computing devices find it very challenging to interact with dynamically changing digital content such as videos, since they do not have the luxury of time to manually move, i.e., pan the magnifier lens to different regions of interest (ROIs) or zoom into these ROIs before the content changes across frames. In this paper, we present SViM, a first of its kind screen-magnifier interface for such users that leverages advances in computer vision, particularly video saliency models, to identify salient ROIs in videos. SViM\u27s interface allows users to zoom in/out of any point of interest, switch between ROIs via mouse clicks and provides assistive panning with the added flexibility that lets the user explore other regions of the video besides the ROIs identified by SViM. Subjective and objective evaluation of a user study with 13 low vision screen magnifier users revealed that overall the participants had a better user experience with SViM over extant screen magnifiers, indicative of the former\u27s promise and potential for making videos accessible to low vision screen magnifier users

    Timestamp-supervised Wearable-based Activity Segmentation and Recognition with Contrastive Learning and Order-Preserving Optimal Transport

    Full text link
    Human activity recognition (HAR) with wearables is one of the serviceable technologies in ubiquitous and mobile computing applications. The sliding-window scheme is widely adopted while suffering from the multi-class windows problem. As a result, there is a growing focus on joint segmentation and recognition with deep-learning methods, aiming at simultaneously dealing with HAR and time-series segmentation issues. However, obtaining the full activity annotations of wearable data sequences is resource-intensive or time-consuming, while unsupervised methods yield poor performance. To address these challenges, we propose a novel method for joint activity segmentation and recognition with timestamp supervision, in which only a single annotated sample is needed in each activity segment. However, the limited information of sparse annotations exacerbates the gap between recognition and segmentation tasks, leading to sub-optimal model performance. Therefore, the prototypes are estimated by class-activation maps to form a sample-to-prototype contrast module for well-structured embeddings. Moreover, with the optimal transport theory, our approach generates the sample-level pseudo-labels that take advantage of unlabeled data between timestamp annotations for further performance improvement. Comprehensive experiments on four public HAR datasets demonstrate that our model trained with timestamp supervision is superior to the state-of-the-art weakly-supervised methods and achieves comparable performance to the fully-supervised approaches.Comment: Under Review (submitted to IEEE TMC

    Managing health risks of perfluoroalkyl acids in aquatic food from a river-estuary-sea environment affected by fluorochemical industry

    Get PDF
    Substantial perfluoroalkyl acids (PFAAs) production still occurs in China, and the consumption of aquatic products is a critical exposure pathway of PFAAs in humans. In this study, specimens of 16 freshwater and 40 marine species were collected in the river-estuary-sea environment affected by a mega fluorochemical industry park in China in 2015, and the edible tissues of these organisms were analyzed for PFAA levels. Perfluorooctanoic acid (PFOA) was the dominating contaminant with an overall contribution of more than 90%, and concentrations as high as 2161 ng/g wet weight (measured in the freshwater winkle). All species with the greatest PFOA levels were benthic. The trophic magnification factor (TMF) of PFOA was 1.10 for freshwater species and 1.28 for marine species, indicating that PFOA was slightly magnifying. Analysis of carbon source indicated that freshwater species were more benthic feeding, while marine species were more pelagic feeding. Aquatic food consumption screening values of PFOA were modified according to estimated daily intake (EDI) values, which generated recommendations for limited meal categories and the do-not-eat category. Thus, this study provides recommendations for mitigating the health risks of PFAA-contaminated aquatic food, ranging from food selection to consumption frequency and proper food processing

    Effects of resveratrol supplementation on methotrexate chemotherapy‐induced bone loss

    Get PDF
    Intensive cancer chemotherapy is known to cause bone defects, which currently lack treatments. This study investigated the effects of polyphenol resveratrol (RES) in preventing bone defects in rats caused by methotrexate (MTX), a commonly used antimetabolite in childhood oncology. Young rats received five daily MTX injections at 0.75 mg/kg/day. RES was orally gavaged daily for seven days prior to, and during, five‐day MTX administration. MTX reduced growth plate thickness, primary spongiosa height, trabecular bone volume, increased marrow adipocyte density, and increased mRNA expression of the osteogenic, adipogenic, and osteoclastogenic factors in the tibial bone. RES at 10 mg/kg was found not to affect bone health in normal rats, but to aggravate the bone damage in MTX‐treated rats. However, RES supplementation at 1 mg/kg preserved the growth plate, primary spongiosa, bone volume, and lowered the adipocyte density. It maintained expression of genes involved in osteogenesis and decreased expression of adipogenic and osteoclastogenic factors. RES suppressed osteoclast formation ex vivo of bone marrow cells from the treated rats. These data suggest that MTX can enhance osteoclast and adipocyte formation and cause bone loss, and that RES supplementation at 1 mg/kg may potentially prevent these bone defects

    Dithiolethione ACDT suppresses neuroinflammation and ameliorates disease severity in experimental autoimmune encephalomyelitis

    Get PDF
    Multiple sclerosis (MS) is an autoimmune disorder characterized by the central nervous system (CNS) infiltration of myelin-specific pathogenic T cells followed by brain inflammation in association with demyelination. Similarly, experimental autoimmune encephalomyelitis (EAE), the animal model of MS, also exhibits increased CNS infiltration of pathogenic T cells, including Th1 and Th17, leading to detrimental effects of neuroinflammation and demyelination. We previously reported that 3H-1,2-dithiole-3-thione (D3T), the structurally-simplest of the sulfur-containing dithiolethiones, exerted a promising therapeutic effect in EAE. In the current study we report that 5-Amino-3-thioxo-3H-(1,2)dithiole-4-carboxylic acid ethyl ester (ACDT), a substituted derivative of D3T, exhibits anti-inflammatory properties in EAE. ACDT, administered post immunization, delayed disease onset and reduced disease severity in chronic C57BL/6 EAE, and ACDT, administered during disease remission, suppressed disease relapse in relapsing-remitting SJL/J EAE. Further analysis of the cellular and molecular mechanisms underlying the protective effects of ACDT in EAE revealed that ACDT inhibited pathogenic T cell infiltration, suppressed microglia activation, repressed neurotoxic A1 astrocyte generation, lessened blood-brain barrier disruption, and diminished MMP3/9 production in the CNS of EAE. In summary, we demonstrate that ACDT suppresses neuroinflammation and ameliorates disease severity in EAE through multiple cellular mechanisms. Our findings suggest the potential of developing ACDT as a novel therapeutic agent for the treatment of MS/EAE

    Cryptic diversity found in Didymellaceae from Australian native legumes

    Get PDF
    Ascochyta koolunga (Didymellaceae, Pleosporales) was first described in 2009 (as Phoma koolunga) and identified as the causal agent of Ascochyta blight of Pisum sativum (field pea) in South Australia. Since then A. koolunga has not been reported anywhere else in the world, and its origins and occurrence on other legume (Fabaceae) species remains unknown. Blight and leaf spot diseases of Australian native, pasture and naturalised legumes were studied to investigate a possible native origin of A. koolunga. Ascochyta koolunga was not detected on native, naturalised or pasture legumes that had leaf spot symptoms, in any of the studied regions in southern Australia, and only one isolate was recovered from P. sativum. However, we isolated five novel species in the Didymellaceae from leaf spots of Australian native legumes from commercial field pea regions throughout southern Australia. The novel species were classified on the basis of morphology and phylogenetic analyses of the internal transcribed spacer region and part of the RNA polymerase II subunit B gene region. Three of these species, Nothophoma garlbiwalawarda sp. nov., Nothophoma naiawu sp. nov. and Nothophoma ngayawang sp. nov., were isolated from Senna artemisioides. The other species described here are Epicoccum djirangnandiri sp. nov. from Swainsona galegifolia and Neodidymelliopsis tinkyukuku sp. nov. from Hardenbergia violacea. In addition, we report three new host-pathogen associations in Australia, namely Didymella pinodes on S. artemisioides and Vicia cracca, and D. lethalis on Lathyrus tingitanus. This is also the first report of Didymella prosopidis in Australi
    corecore