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Abstract  

Multiple sclerosis (MS) is an autoimmune disorder characterized by the central nervous system 

(CNS) infiltration of myelin-specific pathogenic T cells followed by brain inflammation in 

association with demyelination. Similarly, experimental autoimmune encephalomyelitis (EAE), 

the animal model of MS, also exhibits increased CNS infiltration of pathogenic T cells, including 

Th1 and Th17, leading to detrimental effects of neuroinflammation and demyelination. We 

previously reported that 3H-1,2-dithiole-3-thione (D3T), the structurally-simplest of the sulfur-

containing dithiolethiones, exerted a promising therapeutic effect in EAE. In the current study 

we report that 5-Amino-3-thioxo-3H-(1,2)dithiole-4-carboxylic acid ethyl ester (ACDT), a 

substituted derivative of D3T, exhibits anti-inflammatory properties in EAE. ACDT, 

administered post immunization, delayed disease onset and reduced disease severity in chronic 

C57BL/6 EAE, and ACDT, administered during disease remission, suppressed disease relapse in 

relapsing-remitting SJL/J EAE. Further analysis of the cellular and molecular mechanisms 

underlying the protective effects of ACDT in EAE revealed that ACDT inhibited pathogenic T 

cell infiltration, suppressed microglia activation, repressed neurotoxic A1 astrocyte generation, 

lessened blood-brain barrier disruption, and diminished MMP3/9 production in the CNS of EAE. 

In summary, we demonstrate that ACDT suppresses neuroinflammation and ameliorates disease 

severity in EAE through multiple cellular mechanisms. Our findings suggest the potential of 

developing ACDT as a novel therapeutic agent for the treatment of MS/EAE.    

 

Keywords: MS/EAE; Microglia; Th1/Th17; A1 astrocyte; ACDT; Neuroinflammation; Blood-

brain barrier  
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1. Introduction 

Multiple sclerosis (MS) is an autoimmune disorder characterized by the CNS infiltration of 

myelin-specific pathogenic T cells and subsequent brain inflammation in association with myelin 

sheath deterioration (Fletcher et al., 2010; Kurschus, 2015; Yadav et al., 2015). Experimental 

autoimmune encephalomyelitis (EAE) is a commonly used animal model to study MS. Several T 

cell subsets, including CD4
+ 

T cell lineages of Th1 and Th17, CD8
+
 T cells, and IL-17-

producting γδT cells, are essential for the pathogenesis of EAE (Camara et al., 2013; Codarri et 

al., 2011; Grifka-Walk et al., 2015; Jager et al., 2009; McWilliams et al., 2015; Paul et al., 2015). 

In addition, antigen presenting cells such as peripheral dendritic cells and CNS microglial cells 

have been shown to play a pivotal role in the promotion of differentiation and reactivation of 

pathogenic T cells, respectively (Blink et al., 2009; Croxford et al., 2015).  

In our previous study, we demonstrated the amelioration of EAE by the agent 3H-1,2-dithiole-3-

thione (D3T) (Kuo et al., 2016). The promising in vivo activity of D3T, the structurally-simplest 

of the sulfur-containing dithiolethiones, is a composite of its physicochemical, pharmacokinetic, 

and pharmacodynamic properties. Further improvement in the activity of D3T can be made by 

optimizing these properties through structural modifications.  As such, we aimed to determine 

the influence of modifications of D3T structure on EAE activity. We sought a molecule that 

retains the dithiolethione pharmacophore, but has functional groups that are easily modified.  

Our search identified compound 5-Amino-3-thioxo-3H-(1,2)dithiole-4-carboxylic acid ethyl 

ester (ACDT), a dithiolethione with ethyl ester and primary amine functional groups 

(Supplemental Fig. 1). We, therefore, decided to investigate the therapeutic efficacy of ACDT in 

EAE.  
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In the present study, we report that ACDT exerts anti-inflammatory effects on the amelioration 

of neuroinflammation in EAE. Our results showed ACDT, administered post immunization, 

delayed disease onset and reduced disease severity in chronic C57BL/6 EAE, and ACDT, 

administered during disease remission, effectively suppressed disease relapse in relapsing-

remitting SJL/J EAE. Further investigation of cellular and molecular mechanisms underlying the 

protective effect of ACDT in EAE revealed that ACDT suppressed CNS infiltration of 

pathogenic T cells, including Th1 and Th17 cells. In addition, ACDT exhibited a suppressive 

effect on microglia (MG) activation in LPS-stimulated primary MG and in the CNS of EAE. 

Furthermore, through analyzing neuroinflammatory status in the CNS of vehicle- and ACDT-

treated EAE mice, we found that several key inflammatory mediators related to EAE 

pathogenesis, including TNFα, osteopontin, ICAM-1, CD40, myeloperoxidase, CCL5, and 

CCL6, were suppressed by ACDT. The modulatory effect on the generation of A1 astrocytes, 

which have been shown to exert a neurotoxic effect (Liddelow et al., 2017), was also observed in 

the CNS of ACDT-treated EAE mice compared to that in vehicle-treated EAE controls. 

Importantly, ACDT treatment lessened blood-brain barrier (BBB) disruption, and that is 

associated with suppressed MMP3 and MMP9 production in the spinal cord of ACDT-treated 

EAE mice. In summary, we demonstrate that ACDT alleviates neuroinflammation in EAE 

through inhibiting pathogenic T cell infiltration, suppressing MG activation, and lessening BBB 

disruption in the CNS of EAE. Our findings suggest that ACDT could be developed as a 

potential therapeutic agent for the treatment of MS/EAE.    

 

2. Material and Methods 

2.1 Animals 
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C57BL/6 and SJL/J mice, purchased from The Jackson Laboratory (Bar Harbor, ME), were used 

in this study. Mice were bred with free accessed food and water, and housed in rooms with 

controlled temperature, humidity, and 12∶12 hour light∶dark cycle. All animal studies procedures 

were approved by the Purdue University Animal Care and Use Committee (PACUC). 

 

2.2 Reagents 

5-Amino-3-thioxo-3H-(1,2)dithiole-4-carboxylic acid ethyl ester (ACDT) was purchased from 

Oakwood Chemicals (West Columbia, SC). Complete Freund’s adjuvant (CFA), Solutol
®
 HS 15, 

Evans blue, collagenase, deoxyribonuclease I (DNase I), phorbol myristate acetate (PMA), 

ionomycin, paraformaldehyde, hematoxylin, eosin, cresyl violet, and  luxol fast blue (LFB) were 

purchased from Sigma-Aldrich (St. Louis, MO). Antibodies for FACS analysis, including Alexa 

Fluor 488 anti-mouse CD4 (clone: RM4-5), APC anti-mouse IL-17A (clone: TC11-18H10.1), 

PE/Cy7 anti-mouse IFNγ (clone: XMG1.2), APC anti-mouse CD45 (clone: 30-F11), PE anti-

mouse CD11b (clone: M1/70), APC anti-mouse CD40 (clone: 3/23), PE anti-mouse CD80 

(clone: 16-10A1), PE/Cy7 anti-mouse CD80 (clone: 16-10A1), PE anti-mouse CD86 (clone: GL-

1), and PE/Cy7 anti-mouse CD86 (clone: GL-1) were purchased from BioLegend (San Diego, 

CA). Antibodies for western blots, including anti-MMP9 (clone: L51/82) and MMP3 (clone: 

M4405F10) and reagents for intracellular staining, including Brefeldin A solution, fixation 

buffer, and permeabilization wash buffer, were purchased from BioLegend (San Diego, CA). 

Mycobacterium tuberculosis H37 RA and antibodies of β-actin (clone: C4/actin) and HRP goat 

anti-mouse IgG for western blots were purchased from BD (Sparks, MD). Pertussis toxin was 

purchased from List Biological Labs (Campbell, CA). Percoll was purchased from GE 
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Healthcare Life Sciences (Pittsburgh, PA). Metaphosphoric acid was purchased from Alfa Aesar 

(Tewksbury, MA).  

 

2.3 EAE Induction 

C57BL/6 mice were immunized with MOG35-55 and SJL/J mice were immunized with PLP139-151 

to induce chronic and relapsing-remitting EAE, respectively. Disease induction was conducted as 

previously described (Kuo et al., 2016). In brief, 7-9 weeks old female mice were 

subcutaneously injected with an emulsion of 200μg MOG35-55 peptide (C57BL/6 model) or 

100μg PLP139-151 (SJL/J model) in CFA containing Mycobacterium tuberculosis H37 RA (final 

concentration 2 mg/ml) on day 0, and followed by intraperitoneal (i.p.) administration of 200ng 

pertussis toxin in PBS on day 0 and day 2. EAE mice were then randomly grouped into two 

groups. One group was i.p administered with vehicle (0.5ml 5% Solutol HS 15 / 0.9% saline / 

DMSO) and the other group was administered with ACDT (0.5ml 5% Solutol HS 15 / 0.9% 

saline / 20mg/kg ACDT dissolved in DMSO). The clinical scores of vehicle- and ACDT-treated 

EAE mice were evaluated based on the following criteria; 0: normal mouse, no overt signs of 

disease; 1: limp tail or hind limb weakness; 2: limp tail and hind limb weakness; 3: partial hind 

limb paralysis; 4: complete hind limb paralysis; and 5: moribund state. Animals with clinical 

scores of 5 were euthanized. 

 

2.4 Brain and Spinal Cord Tissue Processing  

EAE mice were anesthetized and perfused with ice-cold PBS. The brain and spinal cord were 

then harvested and homogenized. The brain tissues were homogenized with HBSS buffer only, 

and the spinal cord tissues were homogenized with HBSS buffer, containing collagenase and 
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DNase I, followed by 37°C incubation for 45 minutes. Homogenized brain and spinal cord tissue 

samples were then filtered through 70-μm nylon cell strainers. After centrifugation, cells 

prepared from brain and spinal cord tissues were subjected to mononuclear cell isolation or RNA 

extraction. In addition, cells prepared from spinal cord tissues were subjected to cytokine array 

and western blots.  

 

2.5 Isolation of Mononuclear Cells from Brain and Spinal Cord Tissues  

Mononuclear cell isolation was processed as previously described (Kuo et al., 2016). Cells 

prepared from brain and spinal cord tissues were then resuspended in 8ml 30% Percoll and 

underlayered with 4ml 70% Percoll followed by centrifugation for 25 minutes at 1000g at room 

temperature (RT). The mononuclear cells were isolated from the interface between 30% and 70% 

Percoll.   

 

2.6 FACS Analysis for Intracellular Cytokines and Surface Markers 

Mononuclear cells isolated from the spinal cord and brain of C57BL/6 EAE animals were 

stimulated with PMA (50ng/ml) and ionomycin (750ng/ml) in the presence of Brefeldin A 

solution (1μl/ml).  5 hours later, cells were then fixed and permeabilized followed by 

intracellular staining with antibodies of Alexa Fluor 488 anti-mouse CD4 antibody, PE/Cy7 anti-

mouse IFNγ, and APC anti-mouse IL-17. IFNγ- and IL-17-expressing CD4
+
 T cells were then 

determined by FACS analysis. For MG surface marker analysis, the isolated mononuclear cells 

were stained with PE anti-mouse CD11b and APC anti-mouse CD45 with PE/Cy7 anti-mouse 

CD80 or PE/Cy7 anti-mouse CD86, and primary MG were stained with PE anti-mouse CD80, 
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PE/Cy7 anti-mouse CD86, and APC anti-mouse CD40, followed by FACS analysis (BD 

FACSVerse). 

 

2.7 Cytokine Array 

The Proteome Profiler
TM

 Array - Mouse XL Cytokine Array Kit (R&D Systems, ARY028) was 

used to determine the relative expression level of cytokines and chemokines in the spinal cord of 

EAE mice. Experiments were conducted according to the manufacturer's instructions. Cells 

prepared from spinal cord tissues were lysed in RIPA buffer [50mM Tris-HCl (pH8.0), 150mM 

NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.3% SDS, 1mM PMSF, and 1X protease inhibitor 

cocktail]. Protein concentration was detected by PierceTM BCA Protein Assay Kit (Thermo 

Fisher Scientific). 200µg spinal cord protein was incubated with array membrane for overnight at 

4°C on a rocking platform shaker. After incubation, the membrane was washed and incubated 

with the Detection Antibody Cocktail for 1 hour at RT. The membrane was then washed and 

incubated with 1X Streptavidin-HRP for 30 minutes at RT followed by washing and incubation 

with Chemi Reagent Mix. Signal dots appeared on the membrane were then detected by X-ray 

film (FUJIFILM Super RX-N). The fold change of signal dots representing cytokine and 

chemokine expression was measured and determined by using protein array analyzer running 

under Image J (National Institutes of Health). 

 

2.8 Measurement of glutathione levels in the Brain and Spinal Cord of EAE 

Brain and spinal cord tissues collected from EAE mice were subjected to glutathione (GSH) 

assay. The total GSH level was measured by using Glutathione (GSSG/GSH) Detection Kit 

(Enzo Life Sciences, ADI-900-160). The brain and spinal cord tissues were homogenized in ice-
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cold 5% (w/v) metaphosphoric acid (20ml/g tissue). Following centrifugation, supernatants were 

subjected to absorbance reading (405 nm) by BioTek Synergy HT microplate reader (Winooski, 

VT) to determine GSH levels according to manufacturer’s instruction. 

 

2.9 Western Blot Analysis  

Cells prepared from spinal cord tissues were lysed in RIPA buffer [50mM Tris-HCl (pH8.0), 

150mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.3% SDS, 1mM PMSF, and 1X protease 

inhibitor cocktail]. Protein concentration was detected by Pierce
TM

 BCA Protein Assay Kit 

(Thermo Fisher Scientific). Tissue Protein samples were separated on 10% SDS-PAGE and then 

transferred to polyvinylidene difluoride (PVDF) membranes (Millipore). Blots were then 

incubated with MMP9, MMP3, or β-actin antibody. Protein signals were detected by using 

Immobilon
TM

 Western Chemiluminescent HRP Substrate (Millipore) and X-ray film. The 

quantification of protein signals was measured by using Image J software. 

 

2.10 Primary MG Cell Culture 

Primary MG were generated as previously described (Kuo et al., 2017). In brief, cerebral cortical 

cells from 1-2 days old neonatal mice were plated in 75-cm
2
 culture flasks in Dulbecco Modified 

Eagle Medium/F12 (DMEM/F12) (HyClone
TM

) supplemented with 10% heat-inactivated FBS, 

containing 2mM glutamine and 1X antibiotic/antimycotic (complete medium). On day 3 and 6 

after plating, medium was removed and replenished with fresh complete medium containing 10 

ng/ml GM-CSF. MG were harvested at Day 13 or 14 by shaking the flasks at 350 rpm for 30 

minutes at 37°C. Harvested cells were then seeded in the tissue culture wells. After overnight 

resting, cells were stimulated with LPS for 24h to induce surface expression of CD40, CD80, and 
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CD86, or for 1.5h and 3h to induce inflammatory gene expression based on our previous study 

(Kuo et al., 2017). 

 

2.11 Real-time RT-PCR 

Primary MG and cells prepared from brain and spinal cord tissues were subjected to RNA 

extraction followed by cDNA synthesis. Expression of Il-1β, Il-12p35, Il-12p40, Il-23p19, Il-6, 

Gm-csf, Il-1α, Tnfα, Gata1, H2-D1, and Serping1 were detected by real-time RT-PCR as 

previous described (Yen et al., 2008). The primers used were Il-1β: sense 5’-

CCCTGCAGCTGGAGAGTGTGGA-3’ and antisense 5’-TGTGCTCT GCTTGGAGGTGCTG-

3’; Il-12p35: sense 5’-CTGTGCCTTGGTAGCATCTATG -3’ and anti-sense 5’-

GCAGAGTCTCGCCATTATGATTC-3’; Il-12p40: sense 5’-TGGTTTGCCATCGTTT 

TGCTG-3’ and antisense 5’-ACAGGTGAGGTTCACTGTTTCT-3’; Il-23p19: sense 5’-TGCTG 

GATTGCAGAGCAGTAA-3’ and anti-sense 5’-GCATGCAGAGATTCCGAGAGA-3’; Il-6: 

5’-TCCTCTCTGCAAGAGACTTCCATCC-3’ and anti-sense 5’-

GGGAAGGCCGTGGTTGTCA CC-3’; Gm-csf: sense 5’-ATGCCTGTCACGTTGAATGAAG-

3’ and anti-sense 5’-GCGGGTCT GCACACATGTTA-3’; Il-1α: sense 5’- 

CGCTTGAGTCGGCAAAGAAAT-3’ and antisense 5’- CTTCCCGTTGCTTGACGTTG-3’; 

Tnfα: sense 5’-ATGGCCTCCCTCTCATCAGT-3’ and antisense 5’-

CTTGGTGGTTTGCTACGACG-3’; Gata1: sense 5’- GTGAACAGCATGAGGGG TTT-3’ and 

antisense 5’- GTTTTGTTGCCTCTGGGTGT-3’; H2-D1: sense 5’-TCCGAGATTGT 

AAAGCGTGAAGA-3’ and anti-sense 5’- ACAGGGCAGTGCAGGGATAG-3’; Serping1 

sense 5’- ACAGCCCCCTCTGAATTCTT-3’ and antisense 5’-

GGATGCTCTCCAAGTTGCTC-3’.  
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2.12 Evans Blue BBB Permeability Assay 

Evans blue extravasation of CNS tissues of EAE was determined as previously described with 

modifications (Fairless et al., 2012; Lee et al., 2012). Mice were intravenously (i.v.) 

administrated 4ml/kg 2% (w/v) Evans blue dye. After 2 hours circulation, mice were 

anesthetized and perfused with PBS. The brain and spinal cord of EAE mice were then carefully 

dissected to assess Evans blue leakage.  

 

2.13 Histopathology 

EAE mice were sacrificed and perfused with PBS. The spinal cord was then removed from spinal 

columns, and the lumbar region of spinal cord was then separated and fixed in 4% 

paraformaldehyde at 4°C for overnight. Fixed tissues were embedded in paraffin for sectioning. 

Serial 8µm sections were cut on a microtome (Leica RM2155). Cross sections were used for 

hematoxylin and eosin (H&E) or LFB/cresyl violet staining. Stained spinal cord slides were 

examined and imaged under magnification (microscope: BX53, Olympus; camera: EXi Aqua, Q 

Imaging). Image J was used to quantify the area of cell infiltration and the percentage of 

demyelination by an experimenter blinded to experimental groups. 

 

2.14 Statistical Analysis 

Experimental results are given as mean ± SEM. Comparisons between groups were done by 

using the Mann-Whitney U test, unpaired t test, or one-way ANOVA test. Statistical significance 

was determined as p values ≤ 0.05. All statistical analysis was performed by using GraphPad 

Prism 5 software (La Jolla, CA).  
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3. Results 

3.1 ACDT ameliorates disease severity in chronic and relapsing-remitting EAE 

To determine whether ACDT exerts a therapeutic potential in EAE, C57BL/6 mice immunized 

with MOG35-55 were treated with ACDT every day starting from day 1 post immunization, and 

the clinical score of vehicle- and ACDT-treated EAE mice was followed for a period of 30 days. 

Our results showed that ACDT treatment not only delayed disease onset but also reduced disease 

severity in EAE, with the maximum disease score of 2.2±0.3 compared to that of 4.1±0.2 in 

vehicle-treated EAE controls (Fig. 1A and Table). When comparing the cumulative score, 

ACDT-treated EAE mice had a much lower cumulative disease score of 26.6±4.6 compared to 

that of 64.3±2.8 in vehicle-treated EAE controls (Fig. 1A Table).  

We then explored the therapeutic potential of ACDT on the suppression of disease relapse in 

EAE. Relapsing-remitting EAE was induced in SJL/J mice, and EAE mice were administered 

with vehicle or ACDT during disease remission (disease score below 1.5). ACDT treatment 

suppressed disease relapse in EAE, with the maximum disease score of post treatment only 

reaching 1.4±0.2, whereas vehicle-treated EAE controls developed disease relapse following 

remission, with the maximum disease score of post treatment reaching 3.0±0.3 (Fig. 1B and 

Table). When comparing the cumulative score of post treatment, ACDT-treated EAE mice had a 

much lower cumulative score of 12.6±1.9 compared to vehicle-treated EAE mice of 30.2±2.7 

(Fig. 1B Table). Taken altogether, these results demonstrate that ACDT confers protection 

against EAE through ameliorating disease severity and suppressing disease relapse in EAE.   

 

3.2 ACDT suppresses CNS infiltration of encephalitogenic Th1 and Th17 cells in EAE 
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The CNS infiltration of encephalitogenic Th1 and Th17 cells plays a pivotal role in the 

pathogenesis of EAE (Jager et al., 2009; McWilliams et al., 2015). To investigate whether 

ACDT suppresses encephalitogenic CD4
+
 T cell infiltration of CNS, mononuclear cells were 

isolated from the brain and spinal cord of vehicle- and ACDT-treated EAE mice at day 13-14 

post immunization, and the isolated cells were then subjected to FACS analysis of total CD4
+
 T 

cells and CD4
+
 T cells expressing IFNγ (Th1) and IL-17 (Th17). We observed a significant 

increase of infiltrating CD4
+
 T cells in the brain and spinal cord of vehicle-treated EAE mice 

(Fig. 2A), and those CD4
+
 T cells positively expressed IFNγ (Fig. 2B) or IL-17 (Fig. 2C). In 

contrast, the number of infiltrating CD4
+
 T cells was largely reduced in the CNS of ACDT-

treated EAE mice compared to that in vehicle-treated EAE controls, and that is associated with 

decreased infiltration of encephalitogenic Th1 and Th17 cells (Fig. 2). Collectively, these results 

suggest that ACDT-conferred protection in EAE might be mediated through the suppression of 

CNS infiltration of encephalitogenic Th1 and Th17 cells.  

 

3.3 ACDT suppresses MG activation 

MG are the major CNS resident immune cells and function as antigen presenting cells to 

reactivate pathogenic T cells in lesion sites, thereby exacerbating the disease by epitope 

spreading (McMahon et al., 2005; Tompkins et al., 2002). MG activation leads to increased 

secretion of diverse cytokines and enhanced expression of surface maturation markers CD40, 

CD80, and CD86. To investigate whether ACDT exerts a suppressive effect on MG activation, 

we cultured primary MG and activated MG with LPS in the presence or absence of ACDT. LPS 

upregulated surface expression of CD40, CD80, and CD86, whereas ACDT suppressed LPS-

induced CD40, CD80, and CD86 upregulation (Fig. 3A). Moreover, LPS upregulated 
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inflammatory cytokine expression, including IL-23p19, IL-1β, and IL-6 required for Th17 

differentiation and reactivation, and IL-12p35 and IL-12p40 required for Th1 differentiation and 

reactivation. In contrast, ACDT suppressed LPS-induced IL-12p35, IL-12p40, IL-1β, IL-6, and 

IL-23p19 expression (Fig. 3B). GM-CSF, which was shown to promote neuroinflammation in 

EAE (El-Behi et al., 2011; Shiomi et al., 2015), was also upregulated in MG activated with LPS, 

but downregulated in MG activated with LPS in the presence of ACDT (Fig 3B).  

To further investigate whether ACDT modulates MG activation in vivo, EAE was induced and 

mononuclear cells were isolated from the spinal cord and brain of vehicle- and ACDT-treated 

EAE mice at day 13-14 post immunization. The isolated cells were then subjected to CD45, 

CD11b, CD80, and CD86 staining followed by FACS analysis. MG were determined based on 

their positive expression of CD11b and intermediated expression of CD45. Although there was 

no significant difference of CD86 expression on the surface of CD45
int

CD11b
+
 MG isolated from 

the spinal cord and brain of vehicle- and ACDT-treated EAE mice, CD80 expression was 

significantly reduced on the surface of CD45
int

CD11b
+
 MG isolated from the spinal cord and 

brain of ACDT-treated EAE mice compared to that in vehicle-treated EAE controls (Fig. 3C). 

Altogether, these results suggest that ACDT possesses a suppressive effect on MG activation in 

vitro as well as partially in vivo.   

 

3.4 ACDT lessens neuroinflammation in EAE 

To further investigate whether ACDT-mediated suppression of pathogenic T cell infiltration and 

MG activation could lead to the alleviation of neuroinflammation in EAE, the spinal cord 

harvested from vehicle- and ACDT-treated EAE mice was subjected to cytokine array to 

determine the expression of inflammatory mediators. We found that chemokines, related to the 
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recruitment of inflammatory immune cells, including CCL5, CCL6, CCL17, and CXCL10, were 

expressed in the spinal cord of EAE mice, but  their expression was suppressed in the spinal cord 

of ACDT-treated EAE mice (Fig. 4A). In addition, inflammatory mediators that are associated 

with pathogenesis of EAE, such as osteopontin, CD40, ICAM-1, and myeloperoxidase, were also 

expressed in the spinal cord of EAE, but suppressed in the spinal cord of ACDT-treated EAE 

mice (Fig. 4A).  

A recent study shows that IL-1α, TNFα, and C1q, produced by activated MG, induce neurotoxic 

reactive astrocytes that are named “A1 astrocytes”. Importantly, these neurotoxic A1 astrocytes 

are also present in post-mortem brain tissues of MS patients (Liddelow et al., 2017). In our array 

results, we found that IL-1α was expressed in the spinal cord of vehicle-treated EAE controls, 

but suppressed in the spinal cord of ACDT-treated EAE mice. We speculated that ACDT might 

regulate neurotoxic A1 astrocytes in the CNS of EAE through modulating the expression of 

inflammatory molecules required for A1 astrocyte generation. We then measured IL-1α, TNFα, 

and C1q expression in the CNS of vehicle- and ACDT-treated EAE mice. Although we did not 

detect the expression of C1q in the CNS of EAE mice (data not shown), the expression of TNFα 

and IL-1α was largely suppressed in the spinal cord and brain of ACDT-treated EAE mice 

compared to those in vehicle-treated EAE controls (Fig 4B). Subsequently, we determined the 

levels of A1 astrocytes in the spinal cord and brain of vehicle- and ACDT-treated EAE mice by 

measuring A1 astrocyte specific genes, including Ggta1, H2-D1, and Serping1. The expression 

of Ggta1, H2-D1, and Serping1 was suppressed in the CNS of ACDT-treated EAE mice 

compared to that in vehicle-treated EAE controls (Fig. 4C). Taken altogether, these results 

demonstrate that ACDT lessens neuroinflammation and potentially suppresses neurotoxic A1 

astrocyte generation in EAE.  
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3.5 ACDT lessens BBB disruption and alleviates spinal cord pathology in EAE  

To determine whether ACDT lessens EAE-induced BBB disruption, during the peak of disease 

vehicle- and ACDT-treated EAE mice were subjected to Evans Blue injection followed by the 

brain and spinal cord tissue isolation to assess BBB integrity. Evans blue leakage was clearly 

observed in the CNS especially in the spinal cord of vehicle-treated EAE controls, indicating a 

compromised BBB integrity. On the other hand, the leakage of Evans blue was significantly 

reduced in the spinal cord and brain of ACDT-treated EAE mice, suggesting a well preserved 

BBB integrity in ACDT-treated EAE mice (Fig. 5A). Both MMP3 and MMP9 play a detrimental 

role in BBB disruption and breakdown in several neurodegenerative diseases (Fanjul-Fernandez 

et al., 2010; Gerwien et al., 2016; Kim et al., 2011; Konnecke et al., 2013), we thought to 

determine whether the beneficial effect of ACDT on BBB integrity in EAE is mediated through 

its regulatory effect on MMP3 and MMP9 production. We measured MMP3 and MMP9 

expression in the spinal cord of vehicle- and ACDT-treated EAE mice, and found MMP3 and 

MMP9 were highly expressed in the spinal cord of vehicle-treated EAE controls. Conversely, the 

expression of MMP3 and MMP9 was largely suppressed in the spinal cord of ACDT-treated 

EAE mice (Fig 5B).  

We further examined the histopathological features of spinal cord in vehicle- and ACDT-treated 

EAE mice. The spinal cord harvested from EAE mice was subjected to H&E and LFB/cresyl 

violet staining to assess cell infiltration and demyelination, respectively. We observed a 

significant increase of infiltrating inflammatory cells and a moderate level of demyelination in 

the spinal cord of vehicle-treated EAE controls. In contrast, the histopathology of cell infiltration 

and demyelination was alleviated in the spinal cord of ACDT-treated EAE mice (Fig. 5C and D). 



  

16 
 

Altogether, these results demonstrate that ACDT lessens BBB disruption, suppresses MMP3 and 

MMP9 production, inhibits inflammatory cell infiltration, and alleviates demyelination in the 

spinal cord of EAE.   

 

3.6 ACDT enhances GSH levels in the CNS of EAE  

The inflammatory process in EAE is associated with increased production of reactive oxygen 

species and reduced production of redox active compounds, such as GSH, in the CNS (Choi et 

al., 2015; Ljubisavljevic et al., 2012; Mohamed et al., 2003; Morales Pantoja et al., 2016; Ruuls 

et al., 1995). Our group has previously demonstrated that ACDT strongly induced the production 

of GSH in SH-SY5Y cells (Brown et al., 2016). To assess whether ACDT induces GSH 

production in the CNS to modulate neuroinflammation in EAE, the spinal cord and brain were 

harvested from vehicle- and ACDT-treated EAE mice and subjected to GSH analysis. We found 

that GSH levels were higher in the brain and spinal cord of ACDT-treated EAE mice than those 

in vehicle-treated EAE controls (Fig. 6), suggesting that the induction of GSH by ACDT might 

contribute to its suppressive effect on neuroinflammation in EAE.  

 

4. Discussion  

Dithiolethiones have well-demonstrated protective effects in a number of neurodegenerative and 

neurological diseases, including Alzheimer disease, UV-induced retinal pigment epithelium cell 

injury, stroke, and EAE (Cui et al., 2017; Kuo et al., 2016; Kuo et al., 2017; Li et al., 2016; 

Wang et al., 2017). Our group previously reported the anti-inflammatory properties of D3T, the 

structurally simplest of the dithiolethiones, in EAE (Kuo et al., 2016).  As a continuation of our 

study of D3T, we sought to assess the effect of modifying the dithiolethione core structure on 
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EAE activity. ACDT structurally retains the dithiolethione pharmacophore, but has two versatile 

functional groups (carboxylic acid ethyl ester and primary amine) that are readily amendable for 

future modifications. As the therapeutic effect of ACDT in EAE is unknown, we therefore 

investigated its activity in two well-established EAE models, chronic C57BL/6 EAE and 

relapsing-remitting SJL/J EAE. We observed that in the chronic EAE, ACDT treatment delayed 

disease onset for an average of 4 days compared to controls, minimized maximum disease score 

to the average of 2.2 as opposed to 4.1 for controls, and ameliorated disease severity with 

cumulative score of 26.6 compared to 64.3 for controls. More importantly, in the relapsing-

remitting EAE, ACDT, administered during disease remission, prevented disease relapse, and the 

cumulative score of post treatment significantly reduced to 12.6 compared to 30.2 for controls. 

Based on these findings, we concluded that ACDT exerts a therapeutic effect in chronic and 

relapsing-remitting EAE by ameliorating disease severity and preventing disease progression.  

We further investigated the cellular mechanisms underlying the protective effect of ACDT in 

EAE. The infiltration of pathogenic Th1 and Th17 cells has been shown to play a critical role in 

the pathogenesis of EAE (El-Behi et al., 2011; Jager et al., 2009). ACDT treatment suppressed 

the infiltration of Th1 and Th17 cells in the spinal cord and brain of EAE mice compared to 

those in vehicle-treated EAE controls. In addition, our observation of reduced total infiltrating 

CD4
+
 T cells in the CNS of ACDT-treated EAE mice led us to speculate that ACDT might 

lessen disease-induced BBB disruption. Indeed, we found that EAE mice treated with vehicle 

had a compromised BBB integrity and EAE mice treated with ACDT exhibited a well preserved 

BBB integrity, as the profound leakage of Evans blue was only observed in the spinal cord of 

vehicle-treated EAE controls but not in the spinal cord of ACDT-treated EAE mice. Further 

analysis of the spinal cord of EAE revealed that metalloproteinases MMP3 and MMP9, essential 
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proteases contributing to the cleavage of BBB basement membrane and degradation of tight 

junction proteins (Lakhan et al., 2013; Yang et al., 2007), were largely expressed in the spinal 

cord of vehicle-treated EAE controls but dramatically suppressed in the spinal cord of ACDT-

treated EAE mice. These results correlate with the histopathology of spinal cord in which 

increased cell infiltration and enhanced demyelination were observed in vehicle-treated EAE 

controls but not in ACDT-treated EAE mice. CNS resident cells, including MG and brain 

endothelial cells, and infiltrating inflammatory immune cells are the cell populations, producing 

MMP3 and MMP9 under neuroinflammatory conditions (Amtul et al., 2014; Brkic et al., 2015; 

Yang et al., 2007). Further investigation would be required to dissect which cell types that secret 

MMP3 and MMP9 following EAE are modulated by the treatment of ACDT. 

A recent study shows that activated microglia induce neurotoxic reactive astrocytes in 

neurodegenerative diseases (Liddelow et al., 2017). Cytokines TNFα and IL-1α and complement 

component C1q released by activated microglia promote the generation of reactive astrocytes 

that exert a toxic effect on neurons. These reactive astrocytes were subsequently named as “A1 

astrocytes”. A1 astrocytes are rapidly generated in vivo following CNS injury and present in 

many human neurodegenerative diseases, including Huntington’s disease, Alzheimer’s disease, 

ALS, Parkinson’s disease, and MS (Liddelow et al., 2017). A1 astrocytes express a spectrum of 

signature genes that can be used for screening or detecting these neurotoxic reactive astrocytes in 

the CNS of neurodegenerative diseases. In the present study, we examined whether ACDT-

mediated amelioration of neuroinflammation could lead to reduced A1 astrocyte generation in 

EAE. We observed ACDT inhibited a spectrum of cytokines, chemokines, and inflammatory 

mediators in the CNS of EAE. Importantly, essential cytokines required for the generation of 

neurotoxic A1 astrocytes, including TNFα and IL-1α, were suppressed in the CNS of ACDT-
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treated EAE mice, although we did not detect the expression of C1q in the CNS of EAE. 

Subsequent analysis of A1 astrocytes in the CNS of EAE revealed that ACDT suppressed the 

expression of A1 astrocyte signature genes, including Ggta1, H2-d1, and Serping1. Thus, our 

results demonstrated that ACDT ameliorated neuroinflammation and that might subsequently 

reduce neurotoxic A1 astrocyte generation in EAE. However, a comprehensive study through 

measuring additional A1markers is required to further confirm the suppressive effect of ACDT 

on the generation of A1 astrocytes in the CNS of EAE. Moreover, whether the reduction of A1 

astrocyte generation by ACDT could lead to decreased neuronal injury in EAE would require 

further investigation to reveal potential neuroprotective effects of ACDT in EAE.   

Our previous study demonstrated that D3T, the structurally-simplest dithiolethione, ameliorated 

disease of EAE (Kuo et al., 2016). In the current study, we showed ACDT, a dithiolethione with 

ethyl ester and primary amine functional groups, alleviated disease severity to a similar degree as 

D3T in EAE. These results suggest a potential use of dithiolethiones as novel therapies for 

EAE/MS. As dithiolethiones are known to potently activate Nrf2 (Jia et al., 2008; Tran et al., 

2009), the protective effect of D3T and ACDT in EAE might be mediated through Nrf2 defense 

pathway. Currently, there is only one FDA-approved Nrf2 activator on the market, dimethyl 

fumarate (DMF) (Alroughani et al., 2017). Based on the success of this drug in the clinic, the 

development of further Nrf2 activators is warranted. Additionally, DMF activates Nrf2 via the 

depletion of GSH, which generates oxidative stress (Lehmann et al., 2007; Xie et al., 2015). This 

has the potential effect of inducing cellular injury. In contrast, dithiolethiones activate Nrf2 in a 

process that does not trigger oxidative stress onto the cell (Brown et al., 2014; Giustarini et al., 

2014; Kwak et al., 2003). Thus, dithiolethiones, such as D3T and ACDT, may represent better 
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therapeutic agents for the treatment of EAE/MS through direct activation of the Nrf2 pathway 

without compromising the beneficial effect of GSH. 

 

5. Conclusions 

We reported for the first time that ACDT conferred protection against the autoimmune 

inflammatory disease EAE. We showed ACDT inhibited CNS infiltration of pathogenic CD4
+
 T 

cells, including Th1 and Th17 cells, and ACDT suppressed MG activation through inhibiting the 

expression of surface maturation markers and the production of inflammatory cytokines. In 

addition, ACDT lessened BBB disruption in the spinal cord of EAE through inhibiting MMP3 

and MMP9 production that resulted in a better preserved BBB integrity with decreased CNS 

infiltration of inflammatory immune cells and alleviated demyelination in the spinal cord of EAE. 

In summary, our study demonstrated that ACDT exerts a therapeutic potential for the treatment 

of MS/EAE by targeting several pathological pathways related to the development and 

progression of EAE.    
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Figure Legends 

Fig. 1 ACDT ameliorates disease severity in chronic and relapsing-remitting EAE 
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(A) C57BL/6 mice (n=18/group) immunized with MOG35-55 were administered i.p. with vehicle 

or ACDT (20mg/kg) every day starting from day 1 post immunization. (B) SJL/J mice 

(n=9/group) were immunized with PLP139-151 to induce EAE. Following the first remission and 

before the onset of second relapse, EAE animals were administered i.p. with vehicle or ACDT 

(20mg/kg) every day. The clinical score of EAE animals was followed, and EAE mortality rate, 

onset of disease, maximum score, and cumulative score were assessed. Data represent mean ± SEM. 

Statistical significance was determined as: *p<0.05, **p<0.01, and ***p<0.001 by Mann-Whitney U test.  

 

Fig. 2 ACDT suppresses CNS infiltration of encephalitogenic Th1 and Th17 cells in EAE 

C57BL/6 mice (n=9/group) were subjected to EAE induction followed by i.p. administration 

with vehicle or ACDT (20mg/kg) every day starting from day 1 post immunization. At day 13 or 

14 post immunization, mononuclear cells were isolated from the brain and spinal cord of vehicle- 

and ACDT-treated EAE mice. The cell numbers of total CD4
+
 T cells (A), IFNγ- (B), and IL-17-

expressing CD4
+
 Th cells (C) in the brain and spinal cord were determined by FACS analysis. 

Isotype controls (ISO) were used to determine cells positive for surface expression of CD4 (A) 

and CD4
+
 T cells positive for intracellular expression of IFNγ (B) or IL-17 (C). Data represent 

mean ± SEM. Statistical significance was determined as: ***p<0.001 by unpaired t test.  

 

Fig. 3 ACDT suppresses MG activation 

Primary MG were left untreated (medium) or pretreated with vehicle or ACDT 100µM for 1 

hour followed by LPS (100ng/ml) stimulation. (A) 24 hours after LPS treatment, cells were 

subjected to FACS analysis for surface expression of CD40, CD80, and CD86. Dashed lines 

represent isotype control. (B) 1.5 and 3 hours after LPS treatment, cells were collected and 

subjected to RNA extraction followed by Q-PCR analysis for mRNA expression of IL-23p19, 
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IL-12p35, IL-12p40, IL-1β, IL-6, and GM-CSF. One representative of three independent 

experiments is shown. Statistical significance was determined as: *p<0.05, **p<0.01, and 

***p<0.001 by one way ANOVA with post hoc Bonferroni’s multiple comparison test. (C) 

C57BL/6 mice (n=8/group) were subjected to EAE induction followed by i.p. administration 

with vehicle or ACDT (20mg/kg) every day starting from day 1 post immunization. At day 13 or 

14 post immunization, mononuclear cells were isolated from the brain and spinal cord of vehicle- 

and ACDT-treated EAE mice, and the isolated cells were then stained with antibodies of CD45 

and CD11b with CD80 or CD86 followed by FACS analysis. MG were determined as 

CD45
int

CD11b
+
 cells, and the expression of CD80 and CD86 on the surface of CD45

int
CD11b

+
 

cells was determined. Isotype controls (ISO) were used to determine MG positive for CD80 or 

CD86 expression. Statistical significance was determined as: ***p<0.001 by unpaired t test.  

 

Fig. 4 ACDT lessens neuroinflammation in EAE 

C57BL/6 mice were subjected to EAE induction followed by i.p. administration with vehicle or 

ACDT (20mg/kg) every day starting from day 1 post immunization. (A) At day 13 post 

immunization, the spinal cord of vehicle- and ACDT-treated EAE mice was harvested and 

subjected to cytokine array analysis (n=3/group). (B and C) At day 13 or 14 post immunization, 

the spinal cord and brain of vehicle- and ACDT-treated EAE mice (n=10/group) were harvested 

and subjected to Q-PCR analysis for mRNA expression of IL-1α, TNFα (B), Ggta1, H2-D1, and 

Serping1 (C). Statistical significance was determined as: *p<0.05, **p<0.01, and ***p<0.001 

by unpaired t test.  

 

Fig. 5 ACDT lessens BBB disruption and alleviates spinal cord pathology in EAE  
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C57BL/6 EAE animals were i.p. administration with vehicle or ACDT (20mg/kg) every day 

starting from day 1 post immunization. At day 13 post immunization, vehicle- and ACDT-treated 

EAE mice (n=5/group) were subjected to i.v. administration of Evans blue. (A) 2 hours after 

Evans blue administration, animals were sacrificed, and the brain and spinal cord of vehicle- and 

ACDT-treated EAE mice were dissected to assess the leakage of Evans blue. (B) The spinal cord 

tissues were homogenized and subjected to western blot analysis of MMP3 and MMP9 

production. (C and D) The lumbar regions of spinal cord tissues were fixed and subjected to 

H&E and LFB/cresyl violet staining to assess cell infiltration and demyelination, respectively. 

The area of cell infiltration and the percentage of demyelination were quantified. Arrow indicates 

cell infiltration (C) and demyelination (D). Statistical significance was determined as: *p<0.05 

and **p<0.01 by Mann-Whitney U test. 

 

Fig. 6 ACDT enhances GSH levels in the CNS of EAE 

C57BL/6 EAE animals were i.p. administration with vehicle or ACDT (20mg/kg) every day 

starting from day 1 post immunization. At day 13 post immunization, the spinal card and brain of 

vehicle- and ACDT-treated EAE animals (n=12/group) were harvested, and GSH levels of spinal 

cord and brain were determined. Statistical significance was determined as: *p<0.05 and 

**p<0.01 by unpaired t test.  
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Fig. 3
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Fig. 6
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Highlights 

• Dithiolethione ACDT ameliorates disease severity in both chronic and relapsing-remitting 

EAE. 

• ACDT inhibits the CNS infiltration of pathogenic T cells in EAE.  

• ACDT suppresses MG activation in vitro and in vivo.  

• ACDT alleviates neuroinflammation and reduced neurotoxic A1 astrocyte generation in EAE.  

• ACDT lessens blood-brain barrier disruption and alleviates spinal cord pathology in EAE. 

  


