1,077 research outputs found

    The signalling channel of Central Bank interventions:modelling the Yen/US dollar exchange rate

    Get PDF
    This paper presents a theoretical framework analysing the signalling channel of exchange rate interventions as an informational trigger. We develop an implicit target zone framework with learning in order to model the signalling channel. The theoretical premise of the model is that interventions convey signals that communicate information about the exchange rate objectives of the central bank. The model is used to analyse the impact of Japanese FX interventions during the period 1999--2011 on the yen/US dollar dynamics

    Context-dependent neocentromere activity in synthetic yeast chromosome VIII

    Get PDF
    Pioneering advances in genome engineering, and specifically in genome writing, have revolutionized the field of synthetic biology, propelling us toward the creation of synthetic genomes. The Sc2.0 project aims to build the first fully synthetic eukaryotic organism by assembling the genome of Saccharomyces cerevisiae. With the completion of synthetic chromosome VIII (synVIII) described here, this goal is within reach. In addition to writing the yeast genome, we sought to manipulate an essential functional element: the point centromere. By relocating the native centromere sequence to various positions along chromosome VIII, we discovered that the minimal 118-bp CEN8 sequence is insufficient for conferring chromosomal stability at ectopic locations. Expanding the transplanted sequence to include a small segment (~500 bp) of the CDEIII-proximal pericentromere improved chromosome stability, demonstrating that minimal centromeres display context-dependent functionality </p

    MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors

    Get PDF
    BACKGROUND MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated. METHODS Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets. RESULTS Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change. CONCLUSIONS Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers

    Tumor-derived exosomes confer antigen-specific immunosuppression in a murine delayed-type hypersensitivity model

    Get PDF
    Exosomes are endosome-derived small membrane vesicles that are secreted by most cell types including tumor cells. Tumor-derived exosomes usually contain tumor antigens and have been used as a source of tumor antigens to stimulate anti-tumor immune responses. However, many reports also suggest that tumor-derived exosomes can facilitate tumor immune evasion through different mechanisms, most of which are antigen-independent. In the present study we used a mouse model of delayed-type hypersensitivity (DTH) and demonstrated that local administration of tumor-derived exosomes carrying the model antigen chicken ovalbumin (OVA) resulted in the suppression of DTH response in an antigen-specific manner. Analysis of exosome trafficking demonstrated that following local injection, tumor-derived exosomes were internalized by CD11c+ cells and transported to the draining LN. Exosome-mediated DTH suppression is associated with increased mRNA levels of TGF-β1 and IL-4 in the draining LN. The tumor-derived exosomes examined were also found to inhibit DC maturation. Taken together, our results suggest a role for tumor-derived exosomes in inducing tumor antigen-specific immunosuppression, possibly by modulating the function of APCs. © 2011 Yang et al

    Impact of Vitamin C on Endothelial Function and Exercise Capacity in Patients with a Fontan Circulation

    Full text link
    Objective.  To evaluate the impact of antioxidant therapy on functional health status in Fontan‐palliated patients. Design.  Prospective, randomized, double‐blind, placebo‐controlled trial. Patients.  Fifty‐three generally asymptomatic Fontan patients. Interventions.  Patients were randomized to receive either high‐dose ascorbic acid (vitamin C) or placebo for 4 weeks. Outcome Measures.  Peripheral vascular function, as measured with endothelium‐dependent digital pulse amplitude testing (EndoPAT), and exercise capacity were assessed before and after study drug treatment. Primary outcome measures included the EndoPAT index and peripheral arterial tonometry (PAT) ratio, both validated markers of vascular function. Secondary outcome measures included peak oxygen consumption and work. Results.  Twenty‐three vitamin C‐ and 21 placebo‐assigned subjects completed the protocol (83%). Median age and time from Fontan completion were 15 (interquartile range [IQR] 11.7–18.2) and 11.9 years (IQR 9.0–15.7), respectively. Right ventricular morphology was dominant in 30 (57%). Outcome measures were similar between groups at baseline. Among all subjects, vitamin C therapy was not associated with a statistical improvement in either primary or secondary outcome measures. In subjects with abnormal vascular function at baseline, compared with placebo, vitamin C therapy more frequently resulted in normalization of the EndoPAT index (45% vs. 17%) and PAT ratio (38% vs. 13%). Conclusions.  Short‐term therapy with vitamin C does not alter endothelial function or exercise capacity in an asymptomatic Fontan population overall. Vitamin C may provide benefit to a subset of Fontan patients with abnormal vascular function.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92126/1/j.1747-0803.2011.00605.x.pd

    Bio-optical Properties of Cyanobacteria Blooms in Western Lake Erie

    Get PDF
    There is a growing use of remote sensing observations for detecting and quantifying freshwater cyanobacteria populations, yet the inherent optical properties of these communities in natural settings, fundamental to bio-optical algorithms, are not well known. Toward bridging this knowledge gap, we measured a full complement of optical properties in western Lake Erie during cyanobacteria blooms in the summers of 2013 and 2014. Our measurements focus attention on the optical uniqueness of cyanobacteria blooms, which have consequences for remote sensing and bio-optical modeling. We found the cyanobacteria blooms in the western basin during our field work were dominated by Microcystis, while the waters in the adjacent central basin were dominated by Planktothrix. Chlorophyll concentrations ranged from 1 to over 135 μg/L across the study area with the highest concentrations associated with Microcystis in the western basin. We observed large, amorphous colonial Microcystis structures in the bloom area characterized by high phytoplankton absorption and high scattering coefficients with a mean particle backscatter ratio at 443 nm \u3e 0.03, which is higher than other plankton types and more comparable to suspended inorganic sediments. While our samples contained mixtures of both, our analysis suggests high contributions to the measured scatter and backscatter coefficients from cyanobacteria. Our measurements provide new insights into the optical properties of cyanobacteria blooms, and indicate that current semi-analytic models are likely to have problems resolving a closed solution in these types of waters as many of our observations are beyond the range of existing model components. We believe that different algorithm or model approaches are needed for these conditions, specifically for phytoplankton absorption and particle backscatter components. From a remote sensing perspective, this presents a challenge not only in terms of a need for new algorithms, but also for determining when to apply the best algorithm for a given situation. These results are new in the sense that they represent a complete description of the optical properties of freshwater cyanobacteria blooms, and are likely to be representative of bloom conditions for other systems containing Microcystis cells and colonies

    The bacterium Pseudomonas protegens antagonizes the microalga Chlamydomonas reinhardtii using a blend of toxins

    Get PDF
    The unicellular alga Chlamydomonas reinhardtii and the bacterium Pseudomonas protegens serve as a model to study the interactions between photosynthetic and heterotrophic microorganisms. P . protegens secretes the cyclic lipopeptide orfamide A that interferes with cytosolic Ca 2+ homeostasis in C . reinhardtii resulting in deflagellation of the algal cells. Here, we studied the roles of additional secondary metabolites secreted by P . protegens using individual compounds and co‐cultivation of algae with bacterial mutants. Rhizoxin S2, pyrrolnitrin, pyoluteorin, 2,4‐diacetylphloroglucinol (DAPG) and orfamide A all induce changes in cell morphology and inhibit the growth of C . reinhardtii . Rhizoxin S2 exerts the strongest growth inhibition, and its action depends on the spatial structure of the environment (agar versus liquid culture). Algal motility is unaffected by rhizoxin S2 and is most potently inhibited by orfamide A (IC 50 = 4.1 μM). Pyrrolnitrin and pyoluteorin both interfere with algal cytosolic Ca 2+ homeostasis and motility whereas high concentrations of DAPG immobilize C . reinhardtii without deflagellation or disturbance of Ca 2+ homeostasis. Co‐cultivation with a regulatory mutant of bacterial secondary metabolism (Δ gacA ) promotes algal growth under spatially structured conditions. Our results reveal how a single soil bacterium uses an arsenal of secreted antialgal compounds with complementary and partially overlapping activities
    corecore