65 research outputs found

    Management of Ascending Aorta Calcification in Coronary Artery Bypass Grafting

    Get PDF
    Neurological complications are one of the most common complications after coronary artery bypass grafting. With the development of off-pump coronary artery bypass grafting (OPCABG), the incidence of postoperative neurological complications caused by aortic intubation decreased significantly; however, the continuous suture of the great saphenous vein-aortic anastomosis in the coronary artery bypass grafting requires the operation of surgical clamp and perforation on the ascending aorta, which may lead to potential plaque detachment. Calcification of ascending aorta is an independent risk factor for cerebrovascular events after OPCABG. Therefore, it is crucial to explore and operate on the ascending aorta. There are three main methods of proximal anastomosis in OPCABG: (1) partial blocking of ascending aorta with side wall clamp for anastomosis; (2) application of proximal anastomosis auxiliary device (Enclose, Heartstring, etc.) for proximal anastomosis; and (3) original auxiliary device (urethra catheter-water sac) or no-clamp surgical techniques for proximal anastomosis

    Extension rates across the northern Shanxi Grabens, China, from Quaternary geology, seismicity and geodesy

    Get PDF
    Discrepancies between geological, seismic and geodetic rates of strain can indicate that rates of crustal deformation, and hence seismic hazard, are varying through time. Previous studies in the northern Shanxi Grabens, at the northeastern corner of the Ordos Plateau in northern China, have found extension rates of anywhere between 0 and 6 mm a−1 at an azimuth of between 95° and 180°. In this paper we determine extension rates across the northern Shanxi Grabens from offset geomorphological features and a variety of Quaternary dating techniques (including new IRSL and Ar-Ar ages), a Kostrov summation using a 700 yr catalogue of historical earthquakes, and recent campaign GPS measurements. We observe good agreement between Quaternary, seismic and geodetic rates of strain, and we find that the northern Shanxi Grabens are extending at around 1–2 mm a−1 at an azimuth of ≈151°. The azimuth of extension is particularly well constrained and can be reliably inferred from catalogues of small earthquakes. We do not find evidence for any substantial variations in extension rate through time, though there is a notable seismic moment rate deficit since 1750. This deficit could indicate complex fault interactions across large regions, aseismic accommodation of deformation, or that we are quite late in the earthquake cycle with the potential for larger earthquakes in the relatively near future

    The strong earthquakes and seismogenic structures in eastern margin of Tibetan Plateau and adjacent areas: A preface for the special topic

    Get PDF
    The eastern margin of the Tibetan Plateau is composed of multiple secondary tectonic units which constitute typical “multi-level extrusion-rotation active tectonic system”. It is the tectonic transformation belt that regulates the eastward extrusion of plateau blocks, and contains high-density active faults. This area is characterized by frequent and high intensity strong earthquakes and complex geological and geomorphological features. Therefore, this region is one of the areas in China where the problem of earthquake disaster is particularly significant. In recent years, with the research deepening of the national earthquake disaster risk survey, active fault detection of urban,seismic experimental site construction, seismic safety evaluation of engineering sites, identification of active faults and evaluation of crustal stability in major projects sites and urban areas,and the wide application of high-precision remote sensing, tectonic geomorphology, paleoseismic and Quaternary chronology methods. The investigation of seismogenic structures around the eastern margin of the Tibetan Plateau and its adjacent areas has been significantly improved. In order to timely exchange the latest study results in this field support regional earthquake prevention and disaster reduction and geological safety evaluation of important projects sites and infrastructure construction, the journal editorial department of Progress in Earthquake Science organized the special topic “The strong earthquakes and seismogenic structures in eastern margin of Tibetan Plateau and adjacent areas”. More than 20 representative academic papers such as active faults and earthquakes, Jishishan earthquake in Gansu Province,and research reviews in related fields have been collected. In this issue, 10 papers are selected in the special topic I “The strong earthquakes and seismogenic structures in eastern margin of Tibetan Plateau and adjacent areas”. It is hoped that these newly study results may improve the understanding of characteristics of strong earthquake activity and seismogenic structural mechanism in the region, and provide scientific basis for regional strong earthquake risk analysis and effective prevention of strong earthquake disaster risk

    Accurate Mode-Coupling Characterization of Low-Crosstalk Ring-Core Fibers using Integral Calculation based Swept-Wavelength Interferometry Measurement

    Get PDF
    In this paper, to accurately characterize the low inter-mode coupling of the weakly-coupled few mode fibers (FMFs), we propose a modified inter-mode coupling characterization method based on swept-wavelength interferometry measurement, in which an integral calculation approach is used to eliminate significant sources of error that may lead to underestimation of the power coupling coefficient. Using the proposed characterization method, a low-crosstalk ring-core fiber (RCF) with low mode dependent loss (MDL) and with single span length up to 100 km is experimentally measured to have low power coupling coefficients between high-order orbital angular momentum (OAM) mode groups of below -30 dB/km over C band. The measured low coupling coefficients based on the proposed method are verified by the direct system power measurements, proving the feasibility and reliability of the proposed inter-mode coupling characterization method

    AIDA directly connects sympathetic innervation to adaptive thermogenesis by UCP1

    Get PDF
    AIDA最早是由林圣彩教授团队首先鉴定和命名的。2007年林圣彩教授团队与孟安明院士团队合作发现AIDA在斑马鱼体轴发育中的功能(Rui, 2007)。2018年,林圣彩教授团队首次发现了AIDA在哺乳动物中的功能,即AIDA介导的内质网降解途径通过降解脂肪合成途径中的关键酶,而限制膳食脂肪在肠道的吸收这一内在抵御肥胖(Luo, 2018)。而本次成果揭示了AIDA在棕色脂肪组织中特定的功能。这些工作将AIDA引入了脂质应激代谢的重要环节,包括脂质吸收和依赖于脂质的产热过程。该论文的共同第一作者为生命科学学院博士生史猛和硕士生黄晓羽,林圣彩教授和林舒勇教授则为共同通讯作者。【Abstract】The sympathetic nervous system–catecholamine–uncoupling protein 1 (UCP1) axis plays an essential role in non-shivering adaptive thermogenesis. However, whether there exists a direct effector that physically connects catecholamine signalling to UCP1 in response to acute cold is unknown. Here we report that outer mitochondrial membrane-located AIDA is phosphorylated at S161 by the catecholamine-activated protein kinase A (PKA). Phosphorylated AIDA translocates to the intermembrane space, where it binds to and activates the uncoupling activity of UCP1 by promoting cysteine oxidation of UCP1.Adipocyte-specific depletion of AIDA abrogates UCP1-dependent thermogenesis, resulting in hypothermia during acute cold exposure. Re-expression of S161A-AIDA, unlike wild-type AIDA, fails to restore the acute cold response in Aida-knockout mice.The PKA–AIDA–UCP1 axis is highly conserved in mammals, including hibernators. Denervation of the sympathetic postganglionic fibres abolishes cold-induced AIDA-dependent thermogenesis. These findings uncover a direct mechanistic link between sympathetic input and UCP1-mediated adaptive thermogenesis.We thank Y. Li, E. Gnaiger, T. Kuwaki, J. R. B. Lighton, E. T. Chouchani and D. Jiang for technical instruction; X. Li and X.-D. Jiang (Core Facility of Biomedical, Xiamen University) for raising the p-S161-AIDA antibody; the Xiamen University Laboratory Animal Center for the mouse in vitro fertilization service and all the other members of S.C.L. laboratory for their technical assistance. This work was supported by grants from the National Key Research and Development Project of China (grant no. 2016YFA0502001) and the National Natural Science Foundation of China (grant nos 31822027, 31871168, 31690101, 91854208 and 82088102), the Fundamental Research Funds for the Central Universities (grant nos 20720190084 and 20720200069), Project ‘111’ sponsored by the State Bureau of Foreign Experts and Ministry of Education of China (grant no. BP2018017), the Youth Innovation Fund of Xiamen (grant no. 3502Z20206028), the Natural Science Foundation of Fujian Province of China (grant no. 2017J01364) and XMU Training Program of Innovation and Entrepreneurship for Undergraduates (grant no. 2019×0666). 该工作得到了厦门大学实验动物中心和生物医学学部仪器平台的重要协助和国家重点研究和发展项目,国家自然科学基金,厦门大学校长基金等的支持

    Application of natural language understanding in Chinese power dispatching centre

    No full text
    It is difficult for computer to understand the texts in unstructured Chinese language, which becomes an obstacle for further application of artificial intelligence in the power dispatch center. Understanding of the orders from human dispatchers is the premise for the collaboration of machine and human being in power system operation. Towards understanding of dispatching texts, this paper proposes a textual semantic analysis framework with active learning of the semantic structure knowledge. Firstly, the words are vectorized by the Skip-gram models. And the hierarchical clustering algorithm is designed to detect the sentence patterns. Then the knowledge base is set up by converting the sentence structure to their regular expressions. In application, define a proprietary semantic framework to extract important device information and to parse the semantic slot using dependency syntax. Application shows that the Chinese texts describing the operation mode switching process can be understood accurately by the computer program

    Constraints of new apatite fission-track ages on the tectonic pattern and geomorphic development of the northern margin of the Tibetan Plateau

    No full text
    The northern margin of the Qilian Shan is the northernmost edge of the Tibetan Plateau. The deformation timing and geomorphic development along the northern margin of the Qilian Shan are critical to understanding the dynamics of plateau growth. Although previous studies have suggested that thrusting along the middle and westernmost sections of the northern margin of the Qilian Shan began in the middle Miocene, the > 600 km mountain range front may have experienced differential thrusting and exhumation history. We collected 11 apatite fission-track samples along an elevation transect to the south of Jiayuguan to unravel the cooling history and erosion variation of the northern margin of western section of the Qilian Shan. The apatite fission-track ages, fission-track lengths, and thermal modeling suggest a period of rapid exhumation initiated at similar to 15-10 Ma along the northern margin of the Qilian Shan. The new fission-track ages can be divided into three domains with different mean ages. As the distribution of the fission-track ages is tightly confined by tectonic structures among them, we infer that tectonics plays the first-order control on erosion variations. Meanwhile, the strong linkage between erosion rates and glacier distribution may indicate that glacial buzzsaw exerts an important role in mountain building in the northern Qilian Shan. Additionally, combining this result with published data, we suggest that the northern margin of the Qilian Shan experienced a phase of synchronous deformation in the middle Miocene
    corecore