1,247 research outputs found

    Introducing Agility in Hybrid Communication Systems and Sensors

    Get PDF
    This paper presents a new approach in dealing with hybridization issues in communication systems or sensors. The thrust is to separate the logical network (sensor) infrastructure from the physical one. Here we show how we can exploit concepts such as persistent identification which we believe is crucial to be able to connect a variety of heterogeneous devices in a network that grows, and that is robust to failures. A vital characteristic of our architecture is the ability to accommodate a variety of heterogeneous devices and subsystems. Several examples of hybridization of sensors at the physical, logical, and network levels are presented and discussed

    Late Holocene isotope hydrology of Lake Qinghai, NE Tibetan Plateau: effective moisture variability and atmospheric circulation changes

    Get PDF
    A sub-centennial-resolution record of lacustrine carbonate oxygen isotopes (δ<sup>18</sup>O<sub>C</sub>) from the closed-basin Lake Qinghai on the NE Tibetan Plateau shows pronounced variability over the past 1500 years. Changes in δ<sup>18</sup>O<sub>C</sub> in hydrologically closed lakes are often interpreted in terms of changing effective moisture. Under this interpretation our record would imply increasing effective moisture during the Little Ice Age (LIA) compared to the Medieval Warm Period (MWP). However, independent evidence from other archives strongly suggests the Asian summer monsoon was stronger during the MWP and weakened during the LIA. Controls other than effective moisture (the balance of water inputs over evaporative loss) must therefore have contributed to the δ<sup>18</sup>O<sub>C</sub> values. We propose the LIA signal in Lake Qinghai resulted from a reduction in evaporation caused by colder air temperatures, coupled with a decrease in oxygen isotope composition of input waters as a result of an increase in the relative importance of westerly-derived precipitation. Our results caution against simplistic interpretations of carbonate oxygen isotope records from hydrologically closed lakes and suggest all possible controlling factors must be taken into account in order to avoid misleading palaeoclimatic reconstructions

    An adaptive inelastic magnetic mirror for Bose-Einstein condensates

    Get PDF
    We report the reflection and focussing of a Bose-Einstein condensate by a new pulsed magnetic mirror. The mirror is adaptive, inelastic, and of extremely high optical quality. The deviations from specularity are less than 0.5 mrad rms, making this the best atomic mirror demonstrated to date. We have also used the mirror to realize the analog of a beam-expander, producing an ultra-cold collimated fountain of matter wavesComment: 4 pages, 4 figure

    Ab Initio Evidence for the Formation of Impurity d(3z^2-r^2) Holes in Doped La_{2-x}Sr_xCuO_4

    Get PDF
    Using the spin unrestricted Becke-3-Lee-Yang-Parr density functional, we computed the electronic structure of explicitly doped La_{2-x}Sr_xCuO_4 (x = 0.125, 0.25, and 0.5). At each doping level, an impurity hole band is formed within the undoped insulating gap. This band is well-localized to CuO_6 octahedra adjacent to the Sr impurities. The nature of the impurity hole is A_{1g} in symmetry, formed primarily from the z^2 orbital on the Cu and p_z orbitals on the apical O's. There is a strong triplet coupling of this hole with the intrinsic B_{1g} Cu x^2-y^2/O1 p_{sigma} hole on the same site. Optimization of the c coordinate of the apical O's in the doped CuO_6 octahedron lead to an asymmetric anti-Jahn-Teller distortion of the O2 atoms toward the central Cu. In particular, the O2 atom between the Cu and Sr is displaced 0.26 A while the O2 atom between the Cu and La is displaced 0.10 A. Contrary to expectations, investigation of a 0.1 A enhanced Jahn-Teller distortion of this octahedron does not force formation of an x^2-y^2 hole, but instead leads to migration of the z^2 hole to the four other CuO_6 octahedra surrounding the Sr impurity. This latter observation offers a simple explanation for the bifurcation of the Sr-O2 distance revealed in x-ray absorption fine structure data.Comment: Submitted to Phys. Rev. B. See http://www.firstprinciples.com for more informatio

    Instanton propagator and instanton induced processes in scalar model

    Get PDF
    The propagator in the instanton background in the (λϕ4)(- \lambda \phi^{4}) scalar model in four dimensions is studied.Leading and sub-leading terms of its asymptotics for large momenta and its on-shell double residue are calculated analytically. These results are applied to the analysis of the initial-state and initial-final-state corrections and the calculation of the next-to-leading (propagator) correction to the exponent of the cross section of instanton induced multiparticle scattering processes.Comment: 44 pages, 7 postscript figures, LaTe

    Linear and Second-order Optical Response of the III-V Mono-layer Superlattices

    Full text link
    We report the first fully self-consistent calculations of the nonlinear optical properties of superlattices. The materials investigated are mono-layer superlattices with GaP grown on the the top of InP, AlP and GaAs (110) substrates. We use the full-potential linearized augmented plane wave method within the generalized gradient approximation to obtain the frequency dependent dielectric tensor and the second-harmonic-generation susceptibility. The effect of lattice relaxations on the linear optical properties are studied. Our calculations show that the major anisotropy in the optical properties is the result of strain in GaP. This anisotropy is maximum for the superlattice with maximum lattice mismatch between the constituent materials. In order to differentiate the superlattice features from the bulk-like transitions an improvement over the existing effective medium model is proposed. The superlattice features are found to be more pronounced for the second-order than the linear optical response indicating the need for full supercell calculations in determining the correct second-order response.Comment: 9 pages, 4 figures, submitted to Phy. Rev.

    Boundary States for the Rolling D-branes in NS5 Background

    Full text link
    In this paper we construct the time dependent boundary states describing the ``rolling D-brane solutions'' in the NS5 background discovered recently by Kutasov by means of the classical DBI analysis. We first survey some aspects of non-compact branes in the NS5 background based on known boundary states in the N=2 Liouville theory. We consider two types of non-compact branes, one of which is BPS and the other is non-BPS but stable. Then we clarify how to Wick-rotate the non-BPS one appropriately. We show that the Wick-rotated boundary state realizes the correct trajectory of rolling D-brane in the classical limit, and leads to well behaved spectral densities of open strings due to the existence of non-trivial damping factors of energy. We further study the cylinder amplitudes and the emission rates of massive closed string modes.Comment: 25 pages, 2 figures, v2: typos corrected, reference added, v3: emission rates of closed strings correcte

    Hyperbolic phase and squeeze-parameter estimation

    Get PDF
    We define a new representation, the hyperbolic phase representation, which enables optimal estimation of a squeeze parameter in the sense of quantum estimation theory. We compare the signal-to-noise ratio for such measurements, with conventional measurement based on photon counting and homodyne detection. The signal-to-noise ratio for hyperbolic phase measurements is shown to increase quadratically with the squeezing parameter for fixed input power

    Inelastic lifetimes of confined two-component electron systems in semiconductor quantum wire and quantum well structures

    Full text link
    We calculate Coulomb scattering lifetimes of electrons in two-subband quantum wires and in double-layer quantum wells by obtaining the quasiparticle self-energy within the framework of the random-phase approximation for the dynamical dielectric function. We show that, in contrast to a single-subband quantum wire, the scattering rate in a two-subband quantum wire contains contributions from both particle-hole excitations and plasmon excitations. For double-layer quantum well structures, we examine individual contributions to the scattering rate from quasiparticle as well as acoustic and optical plasmon excitations at different electron densities and layer separations. We find that the acoustic plasmon contribution in the two-component electron system does not introduce any qualitatively new correction to the low energy inelastic lifetime, and, in particular, does not produce the linear energy dependence of carrier scattering rate as observed in the normal state of high-TcT_c superconductors.Comment: 16 pages, RevTeX, 7 figures. Also available at http://www-cmg.physics.umd.edu/~lzheng

    Fractional quantum revivals in the atomic gravitational cavity

    Get PDF
    In this paper we discuss the quantum dynamics and fractional quantum revivals of an integrable nonlinear system, consisting of an atom bouncing vertically from an evanescent field, for two cases with the simplified infinite-potential and the more practical exponential potential, respectively. We study the two cases separately, then contrast and compare the results and reach the conclusion that provided the starting position of the atoms is not too close to the reflecting surface supporting the evanescent wave (this condition is always satisfied in present experiments in this field), the two cases will produce the same results. This means that the idealized infinite potential is a good approximation to the more realistic exponential potential. Because the quantum analysis of the infinite-potential case is quite simple and straighforward (since its Schrödinger equation has analytical solutions), this will greatly simplify the quantum analysis of the more complicated exponential potential case and hence has practical significance
    corecore