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Hyperbolic phase and squeeze-parameter estimation
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We define a new representation, the hyperbolic phase representation, which enables optimal
estimation of a squeeze parameter in the sense of quantum estimation theory. We compare the signal-
to-noise ratio for such measurements, with conventional measurexnent based on photon counting
and homodyne detection. The signal-to-noise ratio for hyperbolic phase measurements is shown to
increase quadratically with the squeezing parameter for fixed input power.

PACS number(s): 42.50.—p, 03.65.Bz, 03.65.Ca

I. INTRODUCTION

How eSciently can one estimate a squeeze parameter?
An initial state lg, ) enters a device that transforms it
according to

Our objective is to 6nd a positive operator valued mea-
sure (POM) dII(P) such that

J (PIP)dP = tr[p(P)dll(P)]

provides an optimal estimate of the parameter P. The op-
timal Bayes-cost theory of Helstrom assigns a cost func-
tion C(P, P) and the quantity

where 0 is the generator of squeezing; '(~) = f'(s p)v(pls)no(s) p&p (6)

(8 + p-~)
2

and q, p are canonical position and momentum variables
that satisfy [q, p] = i. The parameter r is the squeeze pa-
rameter. This transformation can be realized in quantum
optics by parametric amplification [1]. Our objective is
then to find the measurement on Ige) that permits the
best estimate of the parameter r, as defined below. For-
mally we wish to find a representation lr) such that the
conditional distribution

P(rlr) =l&rle '" I@)I'

py) = '"pp"-'"p (4)

when sampled provides a good estimate of the parameter.
The question posed above is suggestive of the much

debated question of how best to estimate a phase-shift
parameter in quantum mechanics [2]. Indeed the analogy
is quite strong. To see this, note that the classical analog
of the transformation in Eq. (2) translates phase-space
points along hyperbolic curves defined by qp = const.
In the case of phase transformations the generator is

(q +p )/2, the classical analog of which translates phase-
space points around the circle q + p = const. We are
thus motivated to refer to the paraxneter r as the hyper-
bolic phase.

The general parameter-estimation problem has been
discussed by Helstrom [3] and Holevo [4]. We sketch
brieBy its solution for the covariant measurement sce-
nario described in Eq. (1), with maximum-likelihood pa-
rameter estimation. Ass»~e the relation between the
input and output states is given by

as an outcome-averaged measure of performance for ingo-
ing states distributed according to the prior pe(P). Min-

imization of C(II) according to the choice

C(P P) = ~(P P)— —

dII(P) = $(P)dP, (s)

where

g(p) iApg —imp

The optimization problem then involves (i) finding the
observable B, with eigenvalues P, that commutes with
this POM, and (ii) choosing (s correctly. With the choice
Eq. (8) and Eq. (9), one easily shows that the con-

ditional distribution in Eq. (5) is a function of P —P
alone and is thus shift invariant. We now define the
"optimal" parameter determination as that measurement
which results in a conditional distribution for which the
maximum-likelihood estixnator is optixnal. We will as-
sume a uniform prior distribution for P (maximum ixutial
ignorance). Helstrom [3] has shown that in this case the

identifies the strategy of least probable error in a
maximum-likelihood data analysis scheme ( a robust and
common choice). An intriguing method of solution, due
to Holevo, allows us to verify, with confidence, whether
a candidate POM is optimal, but does not in general tell
us how to find it. In the covariant case an optimal POM
can be constructed.

We will assume that the parameter P takes values on
the real line and further that
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POM must satisfy with eigenstates IP) given by

where

lp(&) —Tldil(&) = o

T- p(p) & o,

(io)

(ii)
IP) = f &~~ ' ~l~)(~l.

Then Eq. (22) becomes

(23)

T = p dII p(&I&) = IHIe
'"

I&} I'. (24)

Let A have the spectral resolution

A = n o. a dn.

For dli(P) to be a POM we require that

(14)

It is then easy to see that in the IP} representation A is a
A A

pure difFerential operator and thus A and 8 are canoni-
cally conjugate variables. For example, if A = ata where
a is the a~nihilation operator of a simple harmonic os-
cillator, then the above construction shows that we need
to measure a quantity diagonal in the Susskind-Glogower
phase states [5]. The resulting POM is not particularly
well behaved (it projects onto states of infinite energy),
but it can be considered as the limit of a sequence of well
behaved physical POM's [6].

which, froxn Eq. (8), requires that

f 6(P)~P = (,

where 1 is the identity operator. Let us now assume that

II. OPTIMAL ESTIMATION
OF A SQUEEZE PARAMETER

The general generator of squeezed states is given by [7]

&o = I&}(&I (i6) G(~) =-[ ' "+( ')" '"1
2

Then Eq. (15) requires that in the basis In)

l(~I&}I =1

Furthermore we can show that

[T,A] = 0.

(17)

(po —T I(o =o,
)

T —pp & 0.

(i9)

(2o)

In this case the constraint equations (10) and (ll) be-
come

If we define a = (q + ip)/~2 and choose sin28 = —1
the generator takes the form given in Eq. (2). The
corresponding unitary transformation then generates a
squeezed vacuum state &om the 6eld ground state. We
are thus asking for the optimal measurements to deter-
mine the degree of squeezing.

Using the results in the Introduction we see that we
need to measure a quantity R in the eigenstates of which
G becomes a pure difFerential operator. The first step in
constructing R and the resulting conditional distribution
p(r]r) is to find the eigenstates of G. These have been
given by Bollini and Oxman [8]. They fall into two classes
denoted by the labels + or —.Thus

It is easy to show that Eq. (19) is satisfied given the
choice of (o in Eq. (16). Equation (20) will be satisfied
if we choose

(~l&) = e*'

where 8 is the phase of (nlrb).
Using the results in Eqs. (8), (9), (16), and (21) in the

definition Eq. (5) we find that

GII }+=( lv}+ (26)

1

(xlp)+ =
27r

(27)

where the generalized functions x+ are defined by [9]

where p, is real. The position representation of these
states is

2

~(PIP) = f ~~~ ' " "l(41~)l (22)

x~, ifx) 0
+ 0, otherwise,

The above results can be s»mmarized in the following
way. If we choose the initial states Ig} such that in the
eigenstates Ia) of the generator A, we have that (nip) =
I(al@}l. Then the optimal estixnation of the parameter
results for ideal measurements of the physical quantity B

0, if') 0
Ixl", otherwise.

~

~

~

(29)

States from difFerent classes are orthogonal; +(ply'}
0, while states within a class are orthonormal with 8 func-
tion normalization. However, because (xly}+ ((xi@) ) is
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nonzero only on the positive (negative) real line, these
states do not form a complete basis for the entire Hilbert
space of square integrable functions. However, each state
is complete within a class. We can then expand an ar-
bitary state lg& as

14) =/ &r (+4)4)l~)++-(ul4)lu)-),

6'

5

4'

3

2'

with the normalization condition

dp + p + p, = 1. (31)

The conjugate representation to lp&y is then defined

3

FIG. 1. A plot of the hyperbolic phase representation for
a coherent state, for different values of a; (a) a=2, (b) a=4,
(c) a=6, (d) a=8.

lr)+ =
OO

dye '""lp,&g.
271 QQ

(32)
Thus the hyperbolic phase distribution is

These states are also complete only on the positive and
negative real line. We are thus led to define the hyper-
bolic phase representation for a state lg& as

P (r) = 2z ) exp[ —2Re(o.) + r —e "]

x cosh[2~2Re(a) e"]. (41)

&~(r) = I+&rl@&l'+ I &rl&&l'

with the normalization condition

dry(r) = 1.

(33)
In Fig. 1 we plot P (r) for various values of a. For
Re(a)» 1 the distribution is sharply peaked at r =
ln v) 2n.

If the initial state is a vacuum state, the output state is
a squeezed vacuum state IO, r) The re. sulting conditional
hyperbolic phase distribution is

The distribution defined in Eq. (33) is the optimal distri-
bution for squeeze-parameter estimation. That is to say,
for suitable input states lg;& and output states

1

p(rlr) = 2
I l

exp[r —e (" ")].fe '"') '

)
(42)

l@(r)& = e '"'14') (35)
The mean and variance of this distribution are given by

the conditional distribution

p(rlr) = I+(rl&(r)&l'+ I &rl&(r)&l' (36)

enables an optimal estimation of the squeeze paremeter r.
For an arbitrary input state the hyperbolic phase distri-
bution is expected to give the best estimation of a squeeze
parameter, although if the initial state is poorly chosen
even the hyperbolic phase distribution may be useless.

To compute the hyperbolic phase distribution we need
only give the wave function for the state of interest, as
we now show. We first note that

1

(air) ~ = x~' b(r —ln x~).

Then for an arbitary state I@& we find

(37)

g(r)Q) = J dr/(r)r~ 6(r —lrrg)

= ."~'@(+e),

(3S)

(39)

where g(z) = (xl@&. For example, if we take the coherent
state lo.&

we find

+ &rlo'& = z ~ exp
I

— ——(lo'I + n ) + ~ne", 4 (r e" 1

(2 2 2 )
(40)

E(r) = r —(C + 2 ln 2) /2
r —0.9817,

E(Er ) = —(I 2, —
I4 E '2)

= 1 2337

(43)

(44)

(46)

where C is the Euler gamma constant (C
0.577 215.. .); ((z, y) denotes the Riemann zeta function,
and b,r = r —E(r). Note that the noise is independent
of the degree of squeezing. Thus the signal-to-noise ratio

A Q

(S) defined by S = g&~"),
)

increases quadratically with
the squeeze parameter, away &om zero at r = 0.9817.
As a comparison we consider how the squeeze parame-
ter would be estimated in this case using available mea-
surement methods. As there is no coherent phase infor-
mation in this state, the best we can do is to measure
the photon number. The mean and variance of the pho-
ton number distribution for a squeezed vacuum state are
E(n) = sinh r and E(b,n2) = cosh rsinh r Thus the.
signal-to-noise ratio is tanh r, which is always less than
1 and approaches 1 only as r ~ oo.

If the squeezing were produced by parametric amplifi-
cation of a coherent state, one would use homodyne de-
tection [10] to determine the amplitude gain and thus the
squeezing parameter. In this case a squeeze parameter is
estimated by measuring a quadrature phase amplitude
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ln (s) clear that for Gxed r the quality of the measurement may
be made arbitrarily good by increasing the input power,
that is, increasing ]a] . Clearly this is better than mea-
surement of quadrature phase amplitude.

-0.5 0.5 1 1.5 2 III. DISCUSSION AND CONCLUSION
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FIG. 2. A plot of the signal-to-noise ratio S defined as the
ratio of the mean squared signal to the signal variance, for an
initial coherent state with varying real amplitudes, plotted as
a function of the imposed squeezing. The amplitudes increase
from bottom to top as 0.=2,4,6,8,10.

variable, xg ——ae' + ate ' . In order to compare this
kind of measurement to the measurement of hyperbolic
phase we consider the input state to the squeezing device
to be a coherent state. The quadrature phase signal-to-
noise ratio in this simple single mode treatment is then
found to be unchanged from input to output as both the
mean amplitude squared and the noise increase in the
same way with the squeezing parameter.

The hyperbolic phase distribution for the squeezed co-
herent state (that is, a two photon coherent state [11])
with real amplitude, transformed according to Eq. (1), is

t'e
P(r[r) = 2

( )
exp[ —2o. + r —e l" ")]

7I )
x cosh(2~2o. e" '). (47)

For large a we can approximate the cosh by an expo-
nential and then it is easy to see that this distribution is
peaked at r —r + In(~2a). This gives the approximate
value of r at which the mean goes to zero. The width of
the distribution, like that for a squeezed vacuum state,
is almost independent of the squeezing imposed on the
state by the interaction. Thus the signal-to-noise ratio
must increase with increasing squeezing, around an ofF-

set determined by —o. In Fig. 2 we plot the log of the
signal-to-noise ratio versus r for various values of o.. It is

(z[B[r)g = r(x[r)g (48)

Thus R[r)~ = r[r) y.
It is not clear how to measure this operator directly in

quantum optics. However, homodyne detection can, in
principle, give the complete probability distribution for z,
&om which any moment of R could be constructed. This
does not leave the system in an infinite energy eigenstate
as homodyne measurements are made on a cavity Geld
state as it damps through the end mirrors. The result-
ing distribution refers to the intial state inside the cavity.
The Gnal state in the cavity is the vacuum state. A re-
lated scheme is optical homodyne tomography [12],which

also enables arbitrary moments of R to be constructed.

In this paper we have deGned a representation for the
single-mode Geld called the hyperbolic phase representa-
tion. The resulting probability distributions obtain phys-
ical significance through the result that hyperbolic phase
distributions enable optimal estimation of a squeeze pa-
rameter. This is the analog of the well-known result that
the Susskind-Glogower phase distributions realize opti-
mal estimation of a phase shift [2]. Unfortunately hy-
perbolic phase measurements must suer &om the same
problems as Susskind-Glogower phase measurement. If
one were to measure hyperbolic phase arbitrarily accu-
rately the system would be left in a hyperbolic phase
eigenstate, which is easily seen to be a state of inGnite
energy. One expects, however, that there are physical
measurements that approximate arbitrarily closely the
hyperbolic phase distribution. To determine what such
measurements might be it is necessary to find the oper-
ator that is diagonal in the hyperbolic phase representa-
tion. This operator is R = ln [x[ as can be seen as follows.
Using Eq. (37) we find that, in the position representa-
tion,
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