19 research outputs found

    Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility

    Get PDF
    Glaucoma is a multi-factorial blinding disease in which genetic factors play an important role. Elevated intraocular pressure is a highly heritable risk factor for primary open angle glaucoma and currently the only target for glaucoma therapy. Our study helps to better understand underlying genetic and molecular mechanisms that regulate intraocular pressure, and identifies a new candidate gene, Cacna2d1, that modulates intraocular pressure and a promising therapeutic, pregabalin, which binds to CACNA2D1 protein and lowers intraocular pressure significantly. Because our study utilizes a genetically diverse population of mice with kno

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation

    Genetic variants linked to myopic macular degeneration in persons with high myopia: CREAM Consortium

    Get PDF
    Purpose To evaluate the roles of known myopia-associated genetic variants for development of myopic macular degeneration (MMD) in individuals with high myopia (HM), using case-control studies from the Consortium of Refractive Error and Myopia (CREAM). Methods A candidate gene approach tested 50 myopia-associated loci for association with HM and MMD, using meta-analyses of case-control studies comprising subjects of European and Asian ancestry aged 30 to 80 years from 10 studies. Fifty loci with the strongest associations with myopia were chosen from a previous published GWAS study. Highly myopic (spherical equivalent [SE] -5.0 diopters [D]) cases with MMD (N = 348), and two sets of controls were enrolled: (1) the first set included 16,275 emmetropes (SE -0.5 D); and (2) second set included 898 highly myopic subjects (SE -5.0 D) without MMD. MMD was classified based on the International photographic classification for pathologic myopia (META-PM). Results In the first analysis, comprising highly myopic cases with MMD (N = 348) versus emmetropic controls without MMD (N = 16,275), two SNPs were significantly associated with high myopia in adults with HM and MMD: (1) rs10824518 (P = 6.20E-07) in KCNMA1, which is highly expressed in human retinal and scleral tissues; and (2) rs524952 (P = 2.32E-16) near GJD2. In the second analysis, comprising highly myopic cases with MMD (N = 348) versus highly myopic controls without MMD (N = 898), none of the SNPs studied reached Bonferroni-corrected significance. Conclusions Of the 50 myopia-associated loci, we did not find any variant specifically associated with MMD, but the KCNMA1 and GJD2 loci were significantly associated with HM in highly myopic subjects with MMD, compared to emmetropes

    Common variants in SOX-2 and congenital cataract genes contribute to age-related nuclear cataract

    Get PDF
    Nuclear cataract is the most common type of age-related cataract and a leading cause of blindness worldwide. Age-related nuclear cataract is heritable (h2 = 0.48), but little is known about specific genetic factors underlying this condition. Here we report findings from the largest to date multi-ethnic meta-analysis of genome-wide association studies (discovery cohort N = 14,151 and replication N = 5299) of the International Cataract Genetics Consortium. We confirmed the known genetic association of CRYAA (rs7278468, P = 2.8 × 10−16) with nuclear cataract and identified five new loci associated with this disease: SOX2-OT (rs9842371, P = 1.7 × 1

    Multi-trait genome-wide association study identifies new loci associated with optic disc parameters

    Get PDF
    A new avenue of mining published genome-wide association studies includes the joint analysis of related traits. The power of this approach depends on the genetic correlation of traits, which reflects the number of pleiotropic loci, i.e. genetic loci influencing multiple traits. Here, we applied new meta-analyses of optic nerve head (ONH) related traits implicated in primary open-angle glaucoma (POAG); intraocular pressure and central corneal thickness using Haplotype reference consortium imputations. We performed a multi-trait analysis of ONH parameters cup area, disc area and vertical cup-disc ratio. We uncover new variants; rs11158547 in PPP1R36-PLEKHG3 and rs1028727 near SERPINE3 at genome-wide significance that replicate in independent Asian cohorts imputed to 1000 Genomes. At this point, validation of these variants in POAG cohorts is hampered by the high degree of heterogeneity. Our results show that multi-trait analysis is a valid approach to identify novel pleiotropic variants for ONH
    corecore