11 research outputs found

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Interaction of P1 Plasmid Partition Components with the Bacterial Chromosome

    No full text
    P1 is a low copy number plasmid that uses a dedicated partition system that actively ensures each daughter cell inherits a copy of the plasmid. P1 plasmid partition is a positioning reaction, ensuring that each plasmid copy is correctly localized to the one-quarter and three-quarter position or midcell in an E. coli cell prior to partition. The factors involved in this positioning process are not well understood. I utilized cell biology techniques and E. coli mukB mutants that produce cells with chromosomal condensation defects to study the role of the bacterial chromosome and P1 ParA as possible localization signals. P1 plasmid prefers to localize to the bacterial nucleoid even when the chromosome is perturbed. ParA is necessary for plasmid localization to the chromosome. In this study, live cell microscopy analysis of ParA indicates that an interaction between P1 ParA and the E. coli nucleoid may underlie the localization mechanism of the plasmid partition system.MAS

    An extended set of yeast-based functional assays accurately identifies human disease mutations

    No full text
    We can now routinely identify coding variants within individual human genomes. A pressing challenge is to determine which variants disrupt the function of disease-associated genes. Both experimental and computational methods exist to predict pathogenicity of human genetic variation. However, a systematic performance comparison between them has been lacking. Therefore, we developed and exploited a panel of 26 yeast-based functional complementation assays to measure the impact of 179 variants (101 disease-and 78 non-disease-associated variants) from 22 human disease genes. Using the resulting reference standard, we show that experimental functional assays in a 1-billion-year diverged model organism can identify pathogenic alleles with significantly higher precision and specificity than current computational methods

    Pooled‐matrix protein interaction screens using Barcode Fusion Genetics

    Get PDF
    Abstract High‐throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome‐scale interaction mapping. Here, we report Barcode Fusion Genetics‐Yeast Two‐Hybrid (BFG‐Y2H), by which a full matrix of protein pairs can be screened in a single multiplexed strain pool. BFG‐Y2H uses Cre recombination to fuse DNA barcodes from distinct plasmids, generating chimeric protein‐pair barcodes that can be quantified via next‐generation sequencing. We applied BFG‐Y2H to four different matrices ranging in scale from ~25 K to 2.5 M protein pairs. The results show that BFG‐Y2H increases the efficiency of protein matrix screening, with quality that is on par with state‐of‐the‐art Y2H methods

    Characterization of JWST science performance from commissioning: National Aeronautics and Space Administration European Space Agency Canadian Space Agency

    No full text

    Characterization of JWST science performance from commissioning: National Aeronautics and Space Administration European Space Agency Canadian Space Agency

    No full text

    The Science Performance of JWST as Characterized in Commissioning

    No full text
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies
    corecore