1,181 research outputs found
Mitotic exit kinase Dbf2 directly phosphorylates chitin synthase Chs2 to regulate cytokinesis in budding yeast
How cell cycle machinery regulates extracellular matrix (ECM) remodeling during cytokinesis remains poorly understood. In the budding yeast Saccharomyces cerevisiae, the primary septum (PS), a functional equivalent of animal ECM, is synthesized during cytokinesis by the chitin synthase Chs2. Here, we report that Dbf2, a conserved mitotic exit kinase, localizes to the division site after Chs2 and directly phosphorylates Chs2 on several residues, including Ser-217. Both phosphodeficient (chs2‑S217A) and phosphomimic (chs2‑S217D) mutations cause defects in cytokinesis, suggesting that dynamic phosphorylation–dephosphorylation of Ser-217 is critical for Chs2 function. It is striking that Chs2‑S217A constricts asymmetrically with the actomyosin ring (AMR), whereas Chs2-S217D displays little or no constriction and remains highly mobile at the division site. These data suggest that Chs2 phosphorylation by Dbf2 triggers its dissociation from the AMR during the late stage of cytokinesis. Of interest, both chs2‑S217A and chs2‑S217D mutants are robustly suppressed by increased dosage of Cyk3, a cytokinesis protein that displays Dbf2‑dependent localization and also stimulates Chs2‑mediated chitin synthesis. Thus Dbf2 regulates PS formation through at least two independent pathways: direct phosphorylation and Cyk3‑mediated activation of Chs2. Our study establishes a mechanism for direct cell cycle control of ECM remodeling during cytokinesis
Analysis of Lateral Decubitus Position During Sleep in Patients With Obstructive Sleep Apnea Using WatchPAT Device
Background and Objectives Measurement of sleep parameters in both supine and non-supine positions is important for the diagnosis of positional obstructive sleep apnea (OSA). However, the influence of right and left lateral decubitus positions (RLDP and LLDP, respectively) on sleep parameters is relatively unknown and has not been well investigated. This study was performed to verify the associations between sleep parameters and lateral decubitus sleep position. Methods A retrospective study was performed on 38 patients who were diagnosed with OSA and underwent surgical interventions from January 2014 to December 2016. Preoperative sleep parameters were evaluated with WatchPAT, and patients who slept sufficiently in both RLDP and LLDP to accurately analyze sleep parameters were enrolled in the study. Basic clinical data including body mass index (BMI) and nasal endoscopic findings of patients were assessed. Results The difference in peripheral arterial tonometry apnea-hypopnea index (pAHI) and PAT respiratory disturbance index (pRDI) between RLDP and LLDP showed no association with the side of deviated nasal septum. Patients with higher BMI showed higher pRDI in LLDP than RLDP (p=0.038). The difference in sleep position percentage between RLDP and LLDP was negatively correlated with the difference in pRDI (p=0.023). Conclusion Higher BMI patients with OSA might benefit more from sleeping in RLDP than LLDP. Patients slept longer in the lateral decubitus position that produced lower pRDI. Not only supine and non-supine positions, but also RLDP and LLDP need to be evaluated in patients with OSA
Hof1 and Chs4 Interact via F-BAR Domain and Sel1-like Repeats to Control Extracellular Matrix Deposition during Cytokinesis
Localized extracellular matrix (ECM) remodeling is thought to stabilize the cleavage furrow and maintain cell shape during cytokinesis [1-14]. This remodeling is spatiotemporally coordinated with a cytoskeletal structure pertaining to a kingdom of life, for example the FtsZ ring in bacteria [15], the phragmoplast in plants [16], and the actomyosin ring in fungi and animals [17, 18]. Although the cytoskeletal structures have been analyzed extensively, the mechanisms of ECM remodeling remain poorly understood. In the budding yeast Saccharomyces cerevisiae, ECM remodeling refers to sequential formations of the primary and secondary septa that are catalyzed by chitin synthase-II (Chs2) and chitin synthase-III (the catalytic subunit Chs3 and its activator Chs4), respectively [18, 19]. Surprisingly, both Chs2 and Chs3 are delivered to the division site at the onset of cytokinesis [6, 20]. What keeps Chs3 inactive until secondary septum formation remains unknown. Here, weshow that Hof1 binds to the Sel1-like repeats (SLRs) of Chs4 via its F-BAR domain and inhibits Chs3-mediated chitin synthesis during cytokinesis. In addition, Hof1 is required for rapid accumulation as well as efficient removal of Chs4 at the division site. This study uncovers a mechanism by which Hof1 controls timely activation of Chs3 during cytokinesis and defines a novel interaction and function for the conserved F-BAR domain and SLR that are otherwise known for their abilities to bind membrane lipids [21, 22] and scaffold protein complex formation [23]
Identification of a novel locus C2 controlling canary yellow flesh color in watermelons
The flesh color of watermelon is an important trait that is determined by carotenoid composition and affects consumers’ fruit desirability. Although a complete dominant control by C locus (Cllcyb) for canary yellow flesh (CY) over red flesh has been reported, red and CY colors frequently appear as a mixed pattern in the same flesh (incomplete canary yellow, ICY) in F1 and inbred lines carrying dominant C alleles. Therefore, we examined the genetic control of the mixed color pattern in ICY using whole-genome resequencing of three ICY (ICY group) and three CY inbred lines (CY group), as well as genetic linkage mapping of an F2 population. The segregation pattern in 135 F2 plants indicated that CY is controlled by a single locus (named C2) dominant over ICY. The whole-genome resequencing of ICY and CY inbred lines revealed an ICY/CY-specific region of approximately 27.60–27.88 Mb on Chr. 2 that was polymorphic between the ICY and CY groups. Our genetic map, using nine cleaved amplified polymorphic sequence markers developed based on the single-nucleotide polymorphisms from the ICY/CY-specific region, confirmed that C2 is located on Chr. 2 and cosegregated with the marker (M7) derived from a non-synonymous single-nucleotide polymorphism of the pentatricopeptide repeat (PPR) gene (ClPPR, Cla97C02G039880). Additionally, 27 watermelon inbred lines of ICY, CY, and red flesh were evaluated using previously reported Cllcyb (C locus)-based markers and our C2 locus-linked ClPPR-based marker (M7). As a result, dominant alleles at the C2 locus were required to produce CY, in addition to dominant alleles at the C locus, while a recessive homozygous genotype at the C locus gave the red flesh irrespective of the genotype at the C2 locus. Using a ClPPR-based cleaved amplified polymorphic sequence developed in this study and Cllcyb-based markers, watermelon cultivars with CY, ICY, and red flesh could be successfully discerned, implying that the combined use of these markers will be efficient for marker-assisted selection of flesh color in watermelon breeding
Synergetic Influence of Microcrystalline Quartz and Alkali Content in Aggregate on Deterioration of Concrete Railroad Ties Used for 15 Years in High-Speed Railways
This study investigated the deteriorations of precast prestressed concrete (PSC) ties that were used for 15 years in high-speed railways in Korea and its damaging mechanism. The collected PSC ties with longitudinal cracks on sides and map cracks on surfaces exhibited strength degradation. The deteriorations were likely related to alkali-silica reaction (ASR) and delayed ettringite formation (DEF) together, given that the presence of massive ettringite crystals and the decomposition of ASR gel were found from microstructural analyses. Although there were no typical reactive siliceous aggregates for ASR in this study, ASR cracks were generated in the PSC ties. This is because the aggregates in the PSC ties with cracks were potentially reactive, and its high alkali-silica reactivity was likely attributable to the presence of microcrystalline quartz, supplying reactive SiO2 to trigger ASR. Furthermore, the alkali content in aggregates was associated with the deterioration of the PSC ties. The alkali-bearing minerals in aggregates (i.e., alkali feldspars) likely supplied enough alkalis for ASR. Besides, micas in aggregates could promote ASR due to their porous structure, which helps easy water ingress
Postbiotic heat-killed lactobacilli modulates on body weight associated with gut microbiota in a pig model
For decades, Lactobacillus has been extensively used as beneficial probiotics because it positively effects on the intestinal health of the host and has been studying its possible serve to treat obesity as well as various diseases. This research aimed to investigate the effects of heat-killed Ligilactobacillus salivarius strain 189 (HK LS 189) supplementation on anti-obesity and gut microbiota. A total of 48 pigs were fed either a basal diet or a diet supplemented with HK LS 189 for 4 weeks. The impact of HK LS 189 supplementation on the composition and function of the intestinal microbiota was revealed by 16 S rRNA gene sequencing. HK LS 189 supplementation significantly decreased growth performance. Moreover, HK LS 189 supplementation altered the gut microbiota of the pigs by decreasing the proportion of Prevotella and increasing the proportion of Parabacteroides. Beta-diversity analysis showed a significant difference between the two groups. The results support the potential use of HK LS 189 for its anti-obesity effect in pigs through modulation of the gut microbiota. Furthermore, we found changes in the functional pathways of the gut microbiota. The functional pathway study indicated that metabolism and lipid metabolism differed between the two groups. Our data may contribute to understanding the potential use of postbiotic supplementation with HK LS 189 for improving the anti-obesity effects.This research was supported by a National Research Foundation of Korea Grant, funded by the Korean government (MEST) (NRF-2021R1A2C3011051) and by the support of “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ0158652021)” Rural Development Administration, Republic of Korea
Use of Coal Bottom Ash and CaO-CaCl2-Activated GGBFS Binder in the Manufacturing of Artificial Fine Aggregates through Cold-Bonded Pelletization
This study investigated the use of coal bottom ash (bottom ash) and CaO-CaCl2-activated ground granulated blast furnace slag (GGBFS) binder in the manufacturing of artificial fine aggregates using cold-bonded pelletization. Mixture samples were prepared with varying added contents of bottom ash of varying added contents of bottom ash relative to the weight of the cementless binder (= GGBFS + quicklime (CaO) + calcium chloride (CaCl2)). In the system, the added bottom ash was not simply an inert filler but was dissolved at an early stage. As the ionic concentrations of Ca and Si increased due to dissolved bottom ash, calcium silicate hydrate (C-S-H) formed both earlier and at higher levels, which increased the strength of the earlier stages. However, the added bottom ash did not affect the total quantities of main reaction products, C-S-H and hydrocalumite, in later phases (e.g., 28 days), but simply accelerated the binder reaction until it had occurred for 14 days. After considering both the mechanical strength and the pelletizing formability of all the mixtures, the proportion with 40 relative weight of bottom ash was selected for the manufacturing of pilot samples of aggregates. The produced fine aggregates had a water absorption rate of 9.83% and demonstrated a much smaller amount of heavy metal leaching than the raw bottom ash
Pyruvate Dehydrogenase Kinase 4 Promotes Vascular Calcification via SMAD1/5/8 Phosphorylation
Vascular calcification, a pathologic response to defective calcium and phosphate homeostasis, is strongly associated with cardiovascular mortality and morbidity. In this study, we have observed that pyruvate dehydrogenase kinase 4 (PDK4) is upregulated and pyruvate dehydrogenase complex phosphorylation is increased in calcifying vascular smooth muscle cells (VSMCs) and in calcified vessels of patients with atherosclerosis, suggesting that PDK4 plays an important role in vascular calcification. Both genetic and pharmacological inhibition of PDK4 ameliorated the calcification in phosphate-treated VSMCs and aortic rings and in vitamin D3-treated mice. PDK4 augmented the osteogenic differentiation of VSMCs by phosphorylating SMAD1/5/8 via direct interaction, which enhances BMP2 signaling. Furthermore, increased expression of PDK4 in phosphate-treated VSMCs induced mitochondrial dysfunction followed by apoptosis. Taken together, our results show that upregulation of PDK4 promotes vascular calcification by increasing osteogenic markers with no adverse effect on bone formation, demonstrating that PDK4 is a therapeutic target for vascular calcification
- …