44,817 research outputs found

    Long-term Observations of Three Nulling Pulsars

    Full text link
    We present an analysis of approximately 200 hours of observations of the pulsars J1634−-5107, J1717−-4054 and J1853++0505, taken over the course of 14.7 yr. We show that all of these objects exhibit long term nulls and radio-emitting phases (i.e. minutes to many hours), as well as considerable nulling fractions (NFs) in the range ∌67 %−90 %\sim67\,\% - 90\,\%. PSR J1717−-4054 is also found to exhibit short timescale nulls (1−40 P1 - 40~P) and burst phases (â‰Č200 P\lesssim 200~P) during its radio-emitting phases. This behaviour acts to modulate the NF, and therefore the detection rate of the source, over timescales of minutes. Furthermore, PSR J1853++0505 is shown to exhibit a weak emission state, in addition to its strong and null states, after sufficient pulse integration. This further indicates that nulls may often only represent transitions to weaker emission states which are below the sensitivity thresholds of particular observing systems. In addition, we detected a peak-to-peak variation of 33±1 %33\pm1\,\% in the spin-down rate of PSR J1717−-4054, over timescales of hundreds of days. However, no long-term correlation with emission variation was found.Comment: 10 pages, 8 figures, accepted for publication in MNRA

    Devroye Inequality for a Class of Non-Uniformly Hyperbolic Dynamical Systems

    Full text link
    In this paper, we prove an inequality, which we call "Devroye inequality", for a large class of non-uniformly hyperbolic dynamical systems (M,f). This class, introduced by L.-S. Young, includes families of piece-wise hyperbolic maps (Lozi-like maps), scattering billiards (e.g., planar Lorentz gas), unimodal and H{\'e}non-like maps. Devroye inequality provides an upper bound for the variance of observables of the form K(x,f(x),...,f^{n-1}(x)), where K is any separately Holder continuous function of n variables. In particular, we can deal with observables which are not Birkhoff averages. We will show in \cite{CCS} some applications of Devroye inequality to statistical properties of this class of dynamical systems.Comment: Corrected version; To appear in Nonlinearit

    On the Apparent Nulls and Extreme Variability of PSR J1107-5907

    Full text link
    We present an analysis of the emission behaviour of PSR J1107-5907, a source known to exhibit separate modes of emission, using observations obtained over approximately 10 yr. We find that the object exhibits two distinct modes of emission; a strong mode with a broad profile and a weak mode with a narrow profile. During the strong mode of emission, the pulsar typically radiates very energetic emission over sequences of ~200-6000 pulses (~60 s-24 min), with apparent nulls over time-scales of up to a few pulses at a time. Emission during the weak mode is observed outside of these strong-mode sequences and manifests as occasional bursts of up to a few clearly detectable pulses at a time, as well as low-level underlying emission which is only detected through profile integration. This implies that the previously described null mode may in fact be representative of the bottom-end of the pulse intensity distribution for the source. This is supported by the dramatic pulse-to-pulse intensity modulation and rarity of exceptionally bright pulses observed during both modes of emission. Coupled with the fact that the source could be interpreted as a rotating radio transient (RRAT)-like object for the vast majority of the time, if placed at a further distance, we advance that this object likely represents a bridge between RRATs and extreme moding pulsars. Further to these emission properties, we also show that the source is consistent with being a near-aligned rotator and that it does not exhibit any measurable spin-down rate variation. These results suggest that nulls observed in other intermittent objects may in fact be representative of very weak emission without the need for complete cessation. As such, we argue that longer (> 1 h) observations of pulsars are required to discern their true modulation properties.Comment: 15 pages, 10 figures, accepted for publication in MNRA

    Dynamic van der Waals Theory of two-phase fluids in heat flow

    Get PDF
    We present a dynamic van der Waals theory. It is useful to study phase separation when the temperature varies in space. We show that if heat flow is applied to liquid suspending a gas droplet at zero gravity, a convective flow occurs such that the temperature gradient within the droplet nearly vanishes. As the heat flux is increased, the droplet becomes attached to the heated wall that is wetted by liquid in equilibrium. In one case corresponding to partial wetting by gas, an apparent contact angle can be defined. In the ther case with larger heat flux, the droplet completely wets the heated wall expelling liquid.Comment: 6pages, 8figure

    Ultimate strength and design of lipped channel columns experiencing local/distortional mode interaction - Part I: Experimental investigation

    Get PDF
    This paper reports the results of an experimental investigation aimed at assessing the post-buckling behaviour and ultimate strength of fixed-ended cold-formed steel lipped channel columns experiencing local/distortional mode interaction. A total of 26 columns were tested and the specimens were carefully selected to ensure various levels of local/distortional interaction effects (more or less close local and distortional critical stresses). The experimental results presented consist of the specimen geometries, material properties, initial imperfections, non-linear equilibrium paths and ultimate strength values. Since the collapse of most columns combines local and distortional deformations, these experimental results may be used to (i) assess the relevance of local/distortional interaction, (ii) calibrate and validate numerical simulations and (iii) provide experimental data aimed at developing a Direct Strength Method (DSM) approach to design cold-formed steel lipped channel columns against local/distortional interaction - such a DSM approach is addressed in Part II of this paper.published_or_final_versionThe 6th International Conference on Advances in Steel Structures in conjunction with IJSSD Symposium on Progress in Structural Stability and Dynamics & IStructE Asia-Pacific Forum (ICASS '09 / IJSSD / IStructE Asia-Pacific Forum), Hong Kong, China, 16-18 December 2009. In Proceedings of the 6th ICASS, 2009, v. 1, p. 460-46

    Long-term Radio Observations of the Intermittent Pulsar B1931+24

    Full text link
    We present an analysis of approximately 13-yr of observations of the intermittent pulsar B1931+24 to further elucidate its behaviour. We find that while the source exhibits a wide range of nulling (~4-39 d) and radio-emitting (~1-19 d) timescales, it cycles between its different emission phases over an average timescale of approximately 38 d, which is remarkably stable over many years. On average, the neutron star is found to be radio emitting for 26 +- 6 % of the time. No evidence is obtained to suggest that the pulsar undergoes any systematic, intrinsic variations in pulse intensity during the radio-emitting phases. In addition, we find no evidence for any correlation between the length of consecutive emission phases. An analysis of the rotational behaviour of the source shows that it consistently assumes the same spin-down rates, i.e. nudot = -16 +- 1 x 10^-15 s^-2 when emitting and nudot = -10.8 +- 0.4 x 10^-15 s^-2 when not emitting, over the entire observation span. Coupled with the stable switching timescale, this implies that the pulsar retains a high degree of magnetospheric memory, and stability, in spite of comparatively rapid (~ms) dynamical plasma timescales. While this provides further evidence to suggest that the behaviour of the neutron star is governed by magnetospheric-state switching, the underlying trigger mechanism remains illusive. This should be elucidated by future surveys with next generation telescopes such as LOFAR, MeerKAT and the SKA, which should detect similar sources and provide more clues to how their radio emission is regulated.Comment: 12 pages, 12 figures, accepted for publication in MNRA

    Far-infrared imaging of tokamak plasma

    Get PDF
    A 20-channel interferometer has been developed which utilizes a linear, one-dimensional microbolometer array to obtain single-shot density profiles from the UCLA Microtor tokamak plasma. The interferometer has been used to study time-dependent phenomena in the plasma density profile. Observations of the sawtooth instability clearly show the growth of the m=0 mode from a localized oscillation (r=1 cm) on axis to an oscillation of the entire plasma. Also, measurements during the initial startup phase of the discharge show evidence of hollow density profiles. In addition, a simultaneous measurement of the poloidal magnetic field has been developed which provides 20 channels of polarimetry. Interferometry and polarimetry both use the same imaging system and the spatial resolution of both measurements has been tested using plastic and crystal-quartz test objects. The signal-to-noise ratio for the polarimeter has also proved adequate for the expected Faraday rotation angle (alphamax=7°, Ip=70 kA, n=5×10^13 cm^−3)

    Chiral extrapolation beyond the power-counting regime

    Get PDF
    Chiral effective field theory can provide valuable insight into the chiral physics of hadrons when used in conjunction with non-perturbative schemes such as lattice QCD. In this discourse, the attention is focused on extrapolating the mass of the rho meson to the physical pion mass in quenched QCD (QQCD). With the absence of a known experimental value, this serves to demonstrate the ability of the extrapolation scheme to make predictions without prior bias. By using extended effective field theory developed previously, an extrapolation is performed using quenched lattice QCD data that extends outside the chiral power-counting regime (PCR). The method involves an analysis of the renormalization flow curves of the low energy coefficients in a finite-range regularized effective field theory. The analysis identifies an optimal regulator, which is embedded in the lattice QCD data themselves. This optimal regulator is the regulator value at which the renormalization of the low energy coefficients is approximately independent of the range of quark masses considered. By using recent precision, quenched lattice results, the extrapolation is tested directly by truncating the analysis to a set of points above 380 MeV, while being blinded of the results probing deeply into the chiral regime. The result is a successful extrapolation to the chiral regime.Comment: 8 pages, 18 figure

    Interacting Antiferromagnetic Droplets in Quantum Critical CeCoIn_5

    Full text link
    The heavy fermion superconductor CeCoIn_5 can be tuned between superconducting and antiferromagnetic ground states by hole doping with Cd. Nuclear magnetic resonance (NMR) data indicate that these two orders coexist microscopically with an ordered moment ~0.7 \mu_B. As the ground state evolves, there is no change in the low frequency spin dynamics in the disordered state. These results suggest that the magnetism emerges locally in the vicinity of the Cd dopants.Comment: 4 pages, 4 figure

    Continuous Beams of Aluminum Alloy Tubular Cross Sections. I: Tests and FE Model Validation

    Get PDF
    The aims of this study are to generate experimental data and develop numerical models for aluminum alloy continuous beams, and to utilize the results to underpin the development of revised design methods for indeterminate structures. This paper presents an experimental program and finite-element (FE) analyses for two-span continuous beams (i.e., five-point bending) of square and rectangular hollow sections (SHSs and RHSs). The experimental program comprised 27 five-point bending tests with three different positioning of loads. The testing procedures and key results are reported. The test specimens were manufactured by extrusion, with 18 of grade 6061-T6 and 9 of grade 6063-T5 heat-treated aluminum alloys. The test specimens were nonslender sections, and mostly of Class 1 proportions. Generally, the specimens failed by the formation of a collapse mechanism comprising three plastic hinges. The distances between the supports and the loading points were varied in order to form the first plastic hinge in different locations, to achieve different load levels between the first hinge and collapse, and to change the rotation demands on the first hinge that formed. The FE models were developed and failure was defined as either when a plastic collapse mechanism was formed or the material fracture strain was reached on the tension flange, whichever occurred first. The numerical models were first validated against the experimentally obtained load-deflection responses, as well as the failure modes. The experimental and FE ultimate loads were both found to be beyond the theoretical loads corresponding to the formation of the first hinge as well as the calculated plastic collapse loads. A key characteristic of aluminum alloy, strain hardening, is shown to be particularly significant in both the experimental program and the numerical investigation. The validated FE models are used to generate numerical results through parametric studies in the companion paper. The development of design rules for indeterminate aluminum alloy structural systems is then described
    • 

    corecore