2,352 research outputs found

    Antimicrobial resistance in human populations: challenges and opportunities.

    Get PDF
    Antimicrobial resistance (AMR) is a global public health threat. Emergence of AMR occurs naturally, but can also be selected for by antimicrobial exposure in clinical and veterinary medicine. Despite growing worldwide attention to AMR, there are substantial limitations in our understanding of the burden, distribution and determinants of AMR at the population level. We highlight the importance of population-based approaches to assess the association between antimicrobial use and AMR in humans and animals. Such approaches are needed to improve our understanding of the development and spread of AMR in order to inform strategies for the prevention, detection and management of AMR, and to support the sustainable use of antimicrobials in healthcare

    Accidental Pinhole and Pinspeck Cameras

    Get PDF
    We identify and study two types of “accidental” images that can be formed in scenes. The first is an accidental pinhole camera image. The second class of accidental images are “inverse” pinhole camera images, formed by subtracting an image with a small occluder present from a reference image without the occluder. Both types of accidental cameras happen in a variety of different situations. For example, an indoor scene illuminated by natural light, a street with a person walking under the shadow of a building, etc. The images produced by accidental cameras are often mistaken for shadows or interreflections. However, accidental images can reveal information about the scene outside the image, the lighting conditions, or the aperture by which light enters the scene.National Science Foundation (U.S.) (CAREER Award 0747120)United States. Office of Naval Research. Multidisciplinary University Research Initiative (N000141010933)National Science Foundation (U.S.) (CGV 1111415)National Science Foundation (U.S.) (CGV 0964004

    Study profile: the Durban Diabetes Study (DDS): a platform for chronic disease research.

    Get PDF
    The Durban Diabetes Study (DDS) is a population-based cross-sectional survey of an urban black population in the eThekwini Municipality (city of Durban) in South Africa. The survey combines health, lifestyle and socioeconomic questionnaire data with standardised biophysical measurements, biomarkers for non-communicable and infectious diseases, and genetic data. Data collection for the study is currently underway and the target sample size is 10 000 participants. The DDS has an established infrastructure for survey fieldwork, data collection and management, sample processing and storage, managed data sharing and consent for re-approaching participants, which can be utilised for further research studies. As such, the DDS represents a rich platform for investigating the distribution, interrelation and aetiology of chronic diseases and their risk factors, which is critical for developing health care policies for disease management and prevention. For data access enquiries please contact the African Partnership for Chronic Disease Research (APCDR) at [email protected] or the corresponding author.The study was supported by the Wellcome Trust (grant number 098051), the African Partnership for Chronic Disease Research (Medical Research Council UK partnership grant number MR/K013491/1), the National Institute for Health Research Cambridge Biomedical Research Centre (UK), the Gates Cambridge Scholarship programme (UK), Novo-Nordisk (South Africa), Sanofi-Aventis (South Africa), and MSD Pharmaceuticals (Pty) Ltd (Southern Africa).This is the final version of the article. It first appeared from Cambridge University Press via http://dx.doi.org/10.1017/gheg.2015.

    Urbanicity and lifestyle risk factors for cardiometabolic diseases in rural Uganda: a cross-sectional study

    Get PDF
    Urban living is associated with unhealthy lifestyles that can increase the risk of cardiometabolic diseases. In sub-Saharan Africa (SSA), where the majority of people live in rural areas, it is still unclear if there is a corresponding increase in unhealthy lifestyles as rural areas adopt urban characteristics. This study examines the distribution of urban characteristics across rural communities in Uganda and their associations with lifestyle risk factors for chronic diseases

    First anatomical network analysis of fore- and hindlimb musculoskeletal modularity in bonobos, common chimpanzees, and humans

    Get PDF
    Studies of morphological integration and modularity, and of anatomical complexity in human evolution typically focus on skeletal tissues. Here we provide the first network analysis of the musculoskeletal anatomy of both the fore- and hindlimbs of the two species of chimpanzee and humans. Contra long-accepted ideas, network analysis reveals that the hindlimb displays a pattern opposite to that of the forelimb: Pan big toe is typically seen as more independently mobile, but humans are actually the ones that have a separate module exclusively related to its movements. Different fore- vs hindlimb patterns are also seen for anatomical network complexity (i.e., complexity in the arrangement of bones and muscles). For instance, the human hindlimb is as complex as that of chimpanzees but the human forelimb is less complex than in Pan. Importantly, in contrast to the analysis of morphological integration using morphometric approaches, network analyses do not support the prediction that forelimb and hindlimb are more dissimilar in species with functionally divergent limbs such as bipedal humans

    New evidence on Allyn Young's style and influence as a teacher

    Get PDF
    This paper publishes the hitherto unpublished correspondence between Allyn Abbott Young's biographer Charles Blitch and 17 of Young's former students or associates. Together with related biographical and archival material, the paper shows the way in which this adds to our knowledge of Young's considerable influence as a teacher upon some of the twentieth century's greatest economists. The correspondents are as follows: James W Angell, Colin Clark, Arthur H Cole, Lauchlin Currie, Melvin G de Chazeau, Eleanor Lansing Dulles, Howard S Ellis, Frank W Fetter, Earl J Hamilton, Seymour S Harris, Richard S Howey, Nicholas Kaldor, Melvin M Knight, Bertil Ohlin, Geoffrey Shepherd, Overton H Taylor, and Gilbert Walker

    Finite difference calculations of permeability in large domains in a wide porosity range.

    Get PDF
    Determining effective hydraulic, thermal, mechanical and electrical properties of porous materials by means of classical physical experiments is often time-consuming and expensive. Thus, accurate numerical calculations of material properties are of increasing interest in geophysical, manufacturing, bio-mechanical and environmental applications, among other fields. Characteristic material properties (e.g. intrinsic permeability, thermal conductivity and elastic moduli) depend on morphological details on the porescale such as shape and size of pores and pore throats or cracks. To obtain reliable predictions of these properties it is necessary to perform numerical analyses of sufficiently large unit cells. Such representative volume elements require optimized numerical simulation techniques. Current state-of-the-art simulation tools to calculate effective permeabilities of porous materials are based on various methods, e.g. lattice Boltzmann, finite volumes or explicit jump Stokes methods. All approaches still have limitations in the maximum size of the simulation domain. In response to these deficits of the well-established methods we propose an efficient and reliable numerical method which allows to calculate intrinsic permeabilities directly from voxel-based data obtained from 3D imaging techniques like X-ray microtomography. We present a modelling framework based on a parallel finite differences solver, allowing the calculation of large domains with relative low computing requirements (i.e. desktop computers). The presented method is validated in a diverse selection of materials, obtaining accurate results for a large range of porosities, wider than the ranges previously reported. Ongoing work includes the estimation of other effective properties of porous media

    Half-Metallic Graphene Nanoribbons

    Full text link
    Electrical current can be completely spin polarized in a class of materials known as half-metals, as a result of the coexistence of metallic nature for electrons with one spin orientation and insulating for electrons with the other. Such asymmetric electronic states for the different spins have been predicted for some ferromagnetic metals - for example, the Heusler compounds- and were first observed in a manganese perovskite. In view of the potential for use of this property in realizing spin-based electronics, substantial efforts have been made to search for half-metallic materials. However, organic materials have hardly been investigated in this context even though carbon-based nanostructures hold significant promise for future electronic device. Here we predict half-metallicity in nanometre-scale graphene ribbons by using first-principles calculations. We show that this phenomenon is realizable if in-plane homogeneous electric fields are applied across the zigzag-shaped edges of the graphene nanoribbons, and that their magnetic property can be controlled by the external electric fields. The results are not only of scientific interests in the interplay between electric fields and electronic spin degree of freedom in solids but may also open a new path to explore spintronics at nanometre scale, based on graphene

    Electrical detection of 31P spin quantum states

    Get PDF
    In recent years, a variety of solid-state qubits has been realized, including quantum dots, superconducting tunnel junctions and point defects. Due to its potential compatibility with existing microelectronics, the proposal by Kane based on phosphorus donors in Si has also been pursued intensively. A key issue of this concept is the readout of the P quantum state. While electrical measurements of magnetic resonance have been performed on single spins, the statistical nature of these experiments based on random telegraph noise measurements has impeded the readout of single spin states. In this letter, we demonstrate the measurement of the spin state of P donor electrons in silicon and the observation of Rabi flops by purely electric means, accomplished by coherent manipulation of spin-dependent charge carrier recombination between the P donor and paramagnetic localized states at the Si/SiO2 interface via pulsed electrically detected magnetic resonance. The electron spin information is shown to be coupled through the hyperfine interaction with the P nucleus, which demonstrates the feasibility of a recombination-based readout of nuclear spins
    • …
    corecore