3,874 research outputs found

    Interleukin-1ß mRNA expression in ischemic rat cortex

    Get PDF
    Background and Pur pose: Interleukin-1ß is a proinftammatory cytokine produced by blood-borne and resident brain inftammatory cells. The present study was conducted to determine if interleukin-1ß mRNA was produced in the brain of rats subjected to permanent focal ischemia. Methods: Rat interleukin-1ß cDNA, synthesized from stimulated rat peritoneal macrophage RNA by reverse transcription and polymerase chain reaction and c10ned in plasmid Bluescript KS+, was used to evaluate the expression of interleukin-1ß mRNA in cerebral cortex from spontaneously hypertensive rats and normotensive rats subjected to permanent middle cerebral artery occlusion. Interleukin-1ß mRNA was quantified by Northern blot analysis and compared with rat macrophage RNA standard. To correct for gel loading, blots were also analyzed with cyclophilin cDNA, which encodes an abundant, conserved protein that was unchanged by the experimental conditions. Results: Interleukin-1ß mRNA produced in the ischemic zone was significantly increased from 6 hours to 120 hours, with a maximum of211±24% ofinterleukin-1ß reference standard, ie, 0.2 ng stimulated rat macrophage RNA, mRNA compared with the level in nonischemic cortices (4±2%) at 12 hours after ischemia (P<.OI; n=6). Interleukin-1ß mRNA at 12 hours after ischemia was markedly elevated in hypertensive rats over levels found in two normotensive rat strains. Neurological deficits were also apparent only in the hypertensive rats. Conclusions: Brain interleukin-1ß mRNA is elevated acutely after permanent focal ischemia and especially in hypertensive rats. These data suggest that this potent proinflammatory and procoagulant cytokine might have a role in brain damage following ischemia

    Integrate and Fire Neural Networks, Piecewise Contractive Maps and Limit Cycles

    Full text link
    We study the global dynamics of integrate and fire neural networks composed of an arbitrary number of identical neurons interacting by inhibition and excitation. We prove that if the interactions are strong enough, then the support of the stable asymptotic dynamics consists of limit cycles. We also find sufficient conditions for the synchronization of networks containing excitatory neurons. The proofs are based on the analysis of the equivalent dynamics of a piecewise continuous Poincar\'e map associated to the system. We show that for strong interactions the Poincar\'e map is piecewise contractive. Using this contraction property, we prove that there exist a countable number of limit cycles attracting all the orbits dropping into the stable subset of the phase space. This result applies not only to the Poincar\'e map under study, but also to a wide class of general n-dimensional piecewise contractive maps.Comment: 46 pages. In this version we added many comments suggested by the referees all along the paper, we changed the introduction and the section containing the conclusions. The final version will appear in Journal of Mathematical Biology of SPRINGER and will be available at http://www.springerlink.com/content/0303-681

    The "Solar Model Problem" Solved by the Abundance of Neon in Stars of the Local Cosmos

    Full text link
    The interior structure of the Sun can be studied with great accuracy using observations of its oscillations, similar to seismology of the Earth. Precise agreement between helioseismological measurements and predictions of theoretical solar models has been a triumph of modern astrophysics (Bahcall et al. 2005). However, a recent downward revision by 25-35% of the solar abundances of light elements such as C, N, O and Ne (Asplund et al. 2004) has broken this accordance: models adopting the new abundances incorrectly predict the depth of the convection zone, the depth profiles of sound speed and density, and the helium abundance (Basu Antia 2004, Bahcall et al. 2005). The discrepancies are far beyond the uncertainties in either the data or the model predictions (Bahcall et al. 2005b). Here we report on neon abundances relative to oxygen measured in a sample of nearby solar-like stars from their X-ray spectra. They are all very similar and substantially larger than the recently revised solar value. The neon abundance in the Sun is quite poorly determined. If the Ne/O abundance in these stars is adopted for the Sun the models are brought back into agreement with helioseismology measurements (Antia Basu 2005, Bahcall et al. 2005c).Comment: 13 pages, 3 Figure

    The direction of postural threat alters balance control when standing at virtual elevation

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this recordAvailability of Data and Material: All data are available here: https://github.com/keithlohse/Gait_VR/tree/master/standing_balanceCode availability: All analysis code are available here: https://github.com/keithlohse/Gait_VR/tree/master/standing_balanceAnxiogenic settings lead to reduced postural sway while standing, but anxiety-related balance may be influenced by the location of postural threat in the environment. We predicted that the direction of threat would elicit a parallel controlled manifold relative to the standing surface, and an orthogonal uncontrolled manifold during standing. Altogether, 14 healthy participants (8 women, mean age = 27.5 yrs, SD = 8.2) wore a virtual reality (VR) headset and stood on a matched real-world walkway (2m x 40cm x 2cm) for 30s at ground level and simulated heights (elevated 15m) in two positions: (1) parallel to walkway, lateral threat; and (2) perpendicular to walkway, anteroposterior threat. Inertial sensors measured postural sway acceleration (e.g., 95% ellipse, root mean square (RMS) of acceleration), and a wrist-worn monitor measured heart rate coefficient of variation (HR CV). Fully factorial linear-mixed effect regressions (LMER) determined the effects of height and position. HR CV moderately increased from low to high height (p = 0.050, g = 0.397). The Height x Position interaction approached significance for sway area (95% ellipse; ß = -0.018, p = 0.062) and was significant for RMS (ß = -0.022, p = 0.007). Post-hoc analyses revealed that frontal plane sway accelerations and RMS increased from low to high elevation in parallel standing, but decreased when facing the threat during perpendicular standing. Postural response to threat varies depending on the direction of threat, suggesting that the control strategies used during standing are sensitive to the direction of threat.National Institutes of Health (NIH

    Similarity solutions for unsteady shear-stress-driven flow of Newtonian and power-law fluids : slender rivulets and dry patches

    Get PDF
    Unsteady flow of a thin film of a Newtonian fluid or a non-Newtonian power-law fluid with power-law index N driven by a constant shear stress applied at the free surface, on a plane inclined at an angle α to the horizontal, is considered. Unsteady similarity solutions representing flow of slender rivulets and flow around slender dry patches are obtained. Specifically, solutions are obtained for converging sessile rivulets (0 < α < π/2) and converging dry patches in a pendent film (π/2 < α < π), as well as for diverging pendent rivulets and diverging dry patches in a sessile film. These solutions predict that at any time t, the rivulet and dry patch widen or narrow according to |x|3/2, and the film thickens or thins according to |x|, where x denotes distance down the plane, and that at any station x, the rivulet and dry patch widen or narrow like |t|−1, and the film thickens or thins like |t|−1, independent of N

    Inhibition of the tyrosine phosphatase SHP-2 suppresses angiogenesis in vitro and in vivo

    Get PDF
    Endothelial cell survival is indispensable to maintain endothelial integrity and initiate new vessel formation. We investigated the role of SHP-2 in endothelial cell survival and angiogenesis in vitro as well as in vivo. SHP-2 function in cultured human umbilical vein and human dermal microvascular endothelial cells was inhibited by either silencing the protein expression with antisense-oligodesoxynucleotides or treatment with a pharmacological inhibitor (PtpI IV). SHP-2 inhibition impaired capillary-like structure formation (p < 0.01; n = 8) in vitro as well as new vessel growth ex vivo (p < 0.05; n = 10) and in vivo in the chicken chorioallantoic membrane (p < 0.01, n = 4). Additionally, SHP-2 knock-down abrogated fibroblast growth factor 2 (FGF-2)-dependent endothelial proliferation measured by MTT reduction ( p ! 0.01; n = 12). The inhibitory effect of SHP-2 knock-down on vessel growth was mediated by increased endothelial apoptosis ( annexin V staining, p ! 0.05, n = 9), which was associated with reduced FGF-2-induced phosphorylation of phosphatidylinositol 3-kinase (PI3-K), Akt and extracellular regulated kinase 1/2 (ERK1/2) and involved diminished ERK1/2 phosphorylation after PI3-K inhibition (n=3). These results suggest that SHP-2 regulates endothelial cell survival through PI3-K-Akt and mitogen-activated protein kinase pathways thereby strongly affecting new vessel formation. Thus, SHP-2 exhibits a pivotal role in angiogenesis and may represent an interesting target for therapeutic approaches controlling vessel growth. Copyright (C) 2007 S. Karger AG, Basel

    Finite difference calculations of permeability in large domains in a wide porosity range.

    Get PDF
    Determining effective hydraulic, thermal, mechanical and electrical properties of porous materials by means of classical physical experiments is often time-consuming and expensive. Thus, accurate numerical calculations of material properties are of increasing interest in geophysical, manufacturing, bio-mechanical and environmental applications, among other fields. Characteristic material properties (e.g. intrinsic permeability, thermal conductivity and elastic moduli) depend on morphological details on the porescale such as shape and size of pores and pore throats or cracks. To obtain reliable predictions of these properties it is necessary to perform numerical analyses of sufficiently large unit cells. Such representative volume elements require optimized numerical simulation techniques. Current state-of-the-art simulation tools to calculate effective permeabilities of porous materials are based on various methods, e.g. lattice Boltzmann, finite volumes or explicit jump Stokes methods. All approaches still have limitations in the maximum size of the simulation domain. In response to these deficits of the well-established methods we propose an efficient and reliable numerical method which allows to calculate intrinsic permeabilities directly from voxel-based data obtained from 3D imaging techniques like X-ray microtomography. We present a modelling framework based on a parallel finite differences solver, allowing the calculation of large domains with relative low computing requirements (i.e. desktop computers). The presented method is validated in a diverse selection of materials, obtaining accurate results for a large range of porosities, wider than the ranges previously reported. Ongoing work includes the estimation of other effective properties of porous media

    The feasibility of using virtual reality to induce mobility-related anxiety during turning

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThe fear of falling, or mobility-related anxiety, profoundly affects gait, but is challenging to study without risk to participants. Purpose: To determine the efficacy of using virtual reality (VR) to manipulate illusions of height and consequently, elevated mobility-related anxiety when turning. Moreover, we examined if mobility-related anxiety effects decline across time in VR environments as participants habituate. Methods: Altogether, 10 healthy participants (five women, mean (standard deviation) age = 28.5 (8.5) years) turned at self-selected and fast speeds on a 2.2 m walkway under two simulated environments: (1) ground elevation; and (2) high elevation (15 m above ground). Peak turning velocity was recorded using inertial sensors and participants rated their cognitive (i.e., worry) and somatic (i.e., tension) anxiety, confidence, and mental effort. Results: A significant Height × Speed × Trial interaction (p =  0.013) was detected for peak turning velocity. On average, the virtual height illusion decreased peak turning velocity, especially at fast speeds. At low elevation, participants decreased speed across trials, but not significantly (p =  0.381), but at high elevation, they significantly increased speed across trials (p =  0.001). At self-selected speeds, no effects were revealed (all p >  0.188) and only effects for Height were observed for fast speeds (p <  0.001). After turning at high elevation, participants reported greater cognitive (p =  0.008) and somatic anxiety (p =  0.007), reduced confidence (p = 0.021), and greater mental effort (p <  0.001) compared to the low elevation. Conclusion: VR can safely induce mobility-related anxiety during dynamic motor tasks, and habituation effects from repeated exposure should be carefully considered in experimental designs and analysis
    corecore