675 research outputs found

    Recent advance in high manufacturing readiness level and high temperature CMOS mixed-signal integrated circuits on silicon carbide

    Get PDF
    A high manufacturing readiness level silicon carbide (SiC) CMOS technology is presented. The unique process flow enables the monolithic integration of pMOS and nMOS transistors with passive circuit elements capable of operation at temperatures of 300 °C and beyond. Critical to this functionality is the behaviour of the gate dielectric and data for high temperature capacitance–voltage measurements are reported for SiO2/4H-SiC (n and p type) MOS structures. In addition, a summary of the long term reliability for a range of structures including contact chains to both n-type and p-type SiC, as well as simple logic circuits is presented, showing function after 2000 h at 300 °C. Circuit data is also presented for the performance of digital logic devices, a 4 to 1 analogue multiplexer and a configurable timer operating over a wide temperature range. A high temperature micro-oven system has been utilised to enable the high temperature testing and stressing of units assembled in ceramic dual in line packages, including a high temperature small form-factor SiC based bridge leg power module prototype, operated for over 1000 h at 300 °C. The data presented show that SiC CMOS is a key enabling technology in high temperature integrated circuit design. In particular it provides the ability to realise sensor interface circuits capable of operating above 300 °C, accommodate shifts in key parameters enabling deployment in applications including automotive, aerospace and deep well drilling

    Quantum state-dependent diffusion and multiplicative noise: a microscopic approach

    Full text link
    The state-dependent diffusion, which concerns the Brownian motion of a particle in inhomogeneous media has been described phenomenologically in a number of ways. Based on a system-reservoir nonlinear coupling model we present a microscopic approach to quantum state-dependent diffusion and multiplicative noise in terms of a quantum Markovian Langevin description and an associated Fokker-Planck equation in position space in the overdamped limit. We examine the thermodynamic consistency and explore the possibility of observing a quantum current, a generic quantum effect, as a consequence of this state-dependent diffusion similar to one proposed by B\"{u}ttiker [Z. Phys. B {\bf 68}, 161 (1987)] in a classical context several years ago.Comment: To be published in Journal of Statistical Physics 28 pages, 3 figure

    A Symmetry-induced Model of Elliptical Galaxy Patterns

    Full text link
    S\'ersic (1968) generalized the de Vaucouleurs law which follows the projected (observed) one dimensional radial profile of elliptical galaxies closely and Dehnen (1993) proposed an analytical formula of the 3-dimensional light distributions whose projected line profile resembles the de Vaucouleurs law. This paper is involved to recover the Dehnen model and generalize the model to account for galaxy elliptical shapes by means of curvilinear coordinate systems and employing a symmetry principle. The symmetry principle maps an orthogonal coordinate system to a light distribution pattern. The coordinate system for elliptical galaxy patterns turns out to be the one which is formed by the complex-plane reciprocal transformation Z=1/WZ=1/W. The resulting spatial (3-dimensional) light distribution is spherically symmetric and has infinite gradient at its centre, which is called spherical-nucleus solution and is used to model galaxy central area. We can make changes of the coordinate system by cutting out some column areas of its definition domain, the areas containing the galaxy centre. The resulting spatial (3-dimensional) light distributions are axisymmetric or triaxial and have zero gradient at the centre, which are called elliptical-shape solutions and are used to model global elliptical patterns. The two types of logarithmic light distributions are added together to model full elliptical galaxy patterns. The model is a generalization of the Dehnen model. One of the elliptical-shape solutions permits realistic numerical calculation and is fitted to all R-band elliptical images from the Frei {\it et al.}(1996)'s galaxy sample. The fitting is satisfactory. This suggests that elliptical galaxy patterns can be represented in terms of a few basic parameters.Comment: 20 pages, 7 figure

    Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab

    Full text link
    This white paper summarizes the scientific opportunities for utilization of the upgraded 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab. It is based on the 52 proposals recommended for approval by the Jefferson Lab Program Advisory Committee.The upgraded facility will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics.Comment: 64 page

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV

    Get PDF
    PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to Phys. Lett. B. Revised to address referee concerns. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The invariant differential cross section for inclusive electron production in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4 <= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Nuclear Modification of Electron Spectra and Implications for Heavy Quark Energy Loss in Au+Au Collisions at sqrt(s_NN)=200 GeV

    Get PDF
    The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 5.0 GeV/c) of electrons as a function of centrality in Au+Au collisions at sqrt(s_NN)=200 GeV. Contributions from photon conversions and from light hadron decays, mainly Dalitz decays of pi^0 and eta mesons, were removed. The resulting non-photonic electron spectra are primarily due to the semi-leptonic decays of hadrons carrying heavy quarks. Nuclear modification factors were determined by comparison to non-photonic electrons in p+p collisions. A significant suppression of electrons at high p_T is observed in central Au+Au collisions, indicating substantial energy loss of heavy quarks.Comment: 330 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore