412 research outputs found

    Comparative transcriptomics uncovers alternative splicing changes and signatures of selection from maize improvement

    Get PDF
    Background: Alternative splicing (AS) is an important regulatory mechanism that greatly contributes to eukaryotic transcriptome diversity. A substantial amount of evidence has demonstrated that AS complexity is relevant to eukaryotic evolution, development, adaptation, and complexity. In this study, six teosinte and ten maize transcriptomes were sequenced to analyze AS changes and signatures of selection in maize domestication and improvement. Results In maize and teosinte, 13,593 highly conserved genes, including 12,030 multiexonic genes, were detected. By identifying AS isoforms from mutliexonic genes, we found that AS types were not significantly different between maize and teosinte. In addition, the two main AS types (intron retention and alternative acceptor) contributed to more than 60% of the AS events in the two species, but the average unique AS events per each alternatively spliced gene in maize (4.12) was higher than that in teosinte (2.26). Moreover, 94 genes generating 98 retained introns with transposable element (TE) sequences were detected in maize, which is far more than 9 retained introns with TEs detected in teosinte. This indicates that TE insertion might be an important mechanism for intron retention in maize. Additionally, the AS levels of 3864 genes were significantly different between maize and teosinte. Of these, 151 AS level-altered genes that are involved in transcriptional regulation and in stress responses are located in regions that have been targets of selection during maize improvement. These genes were inferred to be putatively improved genes. Conclusions We suggest that both maize and teosinte share similar AS mechanisms, but more genes have increased AS complexity during domestication from teosinte to maize. Importantly, a subset of AS level-increased genes that encode transcription factors and stress-responsive proteins may have been selected during maize improvement

    Design of Spot Welding Robot

    Get PDF
    Welding robot has played an extremely important role in the welding production of high-quality, high-efficiency. The paper designed the hardware structure and software of spot welding robot. The hardware design mainly includes the major modules of arm and base; the hardware design includes two parts: manual mode and automatic mode. Manual mode is generally used for the robot system installation, commissioning and troubleshooting, and the major modules are controlled by the start of the corresponding button; automatic mode is mainly used for production stage. The welding robot uses PLC for controlling; the system runs faster and has a short production cycle. DOI: http://dx.doi.org/10.11591/telkomnika.v11i11.289

    A Review on Supercritical Fluidization

    Get PDF
    Supercritical water fluidized bed (SCWFB) has been used to gasify biomass, coal and solid waste to produce gas fuel. Supercritical carbon dioxide fluidized bed (SCCO2FB) was applied in the coating industry. Both the two fluidized bed treats the supercritical fluids as fluidization medium. The fluidization behaviours of particles in the supercritical fluids are quite important issues for achieving the basic two phase flow pattern. Few research institutions have conducted experimental and numerical investigations on the fluidization in supercritical conditions. The authors try to establish a comprehensive insight of fluid dynamics of the supercritical fluidized bed. For the SCWFB, the fluidization transitions of fixed bed, homogeneous bed expansion and bubbling were demarcated by discrimination number Dn. A flow pattern map of Reynolds number vs. Archimedes number was available for describing the flow patterns and their boundaries of the SCCO2FB. Ergun equation was acceptable for calculating the fixed bed pressure drop for both SCWFB and SCCO2FB. Wei and Lu correlations of the minimum fluidization velocity, minimum bubbling velocity and homogeneous bed expansion rate are suggested to design the SCWFB. Wen and Yu equation of the minimum fluidization velocity, Vogt et al. correlation of the homogeneous bed expansion rate and their method for determining the minimum bubbling velocity, Nakajima et al. equation of transition velocity, and Bi and Fan correlation of turbulent velocity were recommended to calculate SSCO2FB

    Functional mapping of genotype-environment interactions for soybean growth by a semiparametric approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functional mapping is a powerful approach for mapping quantitative trait loci (QTLs) that control biological processes. Functional mapping incorporates mathematical aspects of growth and development into a general QTL mapping framework and has been recently integrated with composite interval mapping to build up a so-called composite functional mapping model, aimed to separate multiple linked QTLs on the same chromosomal region.</p> <p>Results</p> <p>This article reports the principle of using composite functional mapping to estimate the effects of QTL-environment interactions on growth trajectories by parametrically modeling the tested QTL in a marker interval and nonparametrically modeling the markers outside the interval as co-factors. With this new model, we can characterize the dynamic patterns of the genetic effects of QTLs governing growth trajectories, estimate the global effects of the underlying QTLs during the course of growth and development, and test the differentiation in the shapes of QTL genotype-specific growth curves between different environments. By analyzing a real example from a soybean genome project, our model detects several QTLs that cause significant genotype-environment interactions for plant height growth processes.</p> <p>Conclusions</p> <p>The model provides a basis for deciphering the genetic architecture of trait expression adjusted to different biotic and abiotic environments for any organism.</p

    GJB2 mutation spectrum in 2063 Chinese patients with nonsyndromic hearing impairment

    Get PDF
    Background: Mutations in GJB2 are the most common molecular defects responsible for autosomal recessive nonsyndromic hearing impairment (NSHI). The mutation spectra of this gene vary among different ethnic groups. Methods: In order to understand the spectrum and frequency of GJB2 mutations in the Chinese population, the coding region of the GJB2 gene from 2063 unrelated patients with NSHI was PCR amplified and sequenced. Results: A total of 23 pathogenic mutations were identified. Among them, five (p.W3X, c.99delT, c.155_c.158delTCTG, c.512_c.513insAACG, and p.Y152X) are novel. Three hundred and seven patients carry two confirmed pathogenic mutations, including 178 homozygotes and 129 compound heterozygotes. One hundred twenty five patients carry only one mutant allele. Thus, GJB2 mutations account for 17.9% of the mutant alleles in 2063 NSHI patients. Overall, 92.6% (684/739) of the pathogenic mutations are frame-shift truncation or nonsense mutations. The four prevalent mutations; c.235delC, c.299_c.300delAT, c.176_c.191del16, and c.35delG, account for 88.0% of all mutantalleles identified. The frequency of GJB2 mutations (alleles) varies from 4% to 30.4% among different regions of China. It also varies among different sub-ethnic groups. Conclusion: In some regions of China, testing of the three most common mutations can identify at least one GJB2 mutant allele in all patients. In other regions such as Tibet, the three most common mutations account for only 16% the GJB2 mutant alleles. Thus, in this region, sequencing of GJB2 would be recommended. In addition, the etiology of more than 80% of the mutant alleles for NSHI in China remains to be identified. Analysis of other NSHI related genes will be necessary.Version of Recor

    An Improved Approach for Mapping Quantitative Trait Loci in a Pseudo-Testcross: Revisiting a Poplar Mapping Study

    Get PDF
    A pseudo-testcross pedigree is widely used for mapping quantitative trait loci (QTL) in outcrossing species, but the model for analyzing pseudo-testcross data borrowed from the inbred backcross design can only detect those QTLs that are heterozygous only in one parent. In this study, an intercross model that incorporates the high heterozygosity and phase uncertainty of outcrossing species was used to reanalyze a published data set on QTL mapping in poplar trees. Several intercross QTLs that are heterozygous in both parents were detected, which are responsible not only for biomass traits, but also for their genetic correlations. This study provides a more complete identification of QTLs responsible for economically important biomass traits in poplars
    corecore