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Abstract

Supercritical water fluidized bed (SCWFB) has been used to gasify biomass, coal and solid
waste to produce gas fuel. Supercritical carbon dioxide fluidized bed (SCCO2FB) was
applied in the coating industry. Both the two fluidized bed treats the supercritical fluids
as fluidization medium. The fluidization behaviours of particles in the supercritical fluids
are quite important issues for achieving the basic two phase flow pattern. Few research
institutions have conducted experimental and numerical investigations on the fluidization
in supercritical conditions. The authors try to establish a comprehensive insight of fluid
dynamics of the supercritical fluidized bed. For the SCWFB, the fluidization transitions of
fixed bed, homogeneous bed expansion and bubbling were demarcated by discrimination
number Dn. A flow pattern map of Reynolds number vs. Archimedes number was avail-
able for describing the flow patterns and their boundaries of the SCCO2FB. Ergun equation
was acceptable for calculating the fixed bed pressure drop for both SCWFB and SCCO2FB.
Wei and Lu correlations of the minimum fluidization velocity, minimum bubbling velocity
and homogeneous bed expansion rate are suggested to design the SCWFB. Wen and Yu
equation of the minimum fluidization velocity, Vogt et al. correlation of the homogeneous
bed expansion rate and their method for determining the minimum bubbling velocity,
Nakajima et al. equation of transition velocity, and Bi and Fan correlation of turbulent
velocity were recommended to calculate SSCO2FB.

Keywords: supercritical fluids, fluidized bed, flow pattern, simulation, experiment

1. Introduction

Supercritical fluidized bed fluidizes solids with supercritical fluids. The supercritical fluids is the

fluid phase, and the solid particles including silica sand, biomass, coal or some coating particles

are used in specific applications. Normally, supercritical fluidized bed can be divided into two

types according the different supercritical fluids: supercritical water (SCW) and supercritical

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



carbon dioxide (SCCO2). The critical point of SCW and SCCO2 is Tc = 374�C and PC = 22.1 MPa,

and Tc = 31.26�C, PC = 7.36 MPa, respectively. The properties including density, viscosity, con-

ductivity, and specific heat capacity vary with operating temperature and pressure. The proper-

ties of water are calculated by ISAWP-IF97 equations based on the operating temperature and

pressure [1]. The drastic and fast variation of property under temperatures near the pseudo-

critical temperature greatly affects the multiphase flow and heat transfer processes [2, 3].

1.1. Applications of supercritical fluidized bed

The supercritical water fluidized bed (SCWFB) has been used for gasifying biomass and coal

for hydrogen production. The concept of SCWFB reactor was proposed first by Matsumura

and Minowa [4]. In 2008, State Key Laboratory of Multiphase Flow in Power Engineering

(SKLMF) of Xi’an Jiaotong University developed a SCWFB reactor for hydrogen production

by gasifying wet biomass [5]. The reactor could avoid plugging, increase the hydrogen yield

and improve gasification efficiency. Then, SKLMF successfully applied the SCW fluidized bed

reactor to gasify coal and established pilot plant for gasification of biomass or coal [6]. In

addition, the water fluidized bed operating in high pressure and temperature is a promising

reactor for other high temperature water reactions to produce gas or liquid fuels.

The SCCO2 is treated as a solvent and fluidization medium in the fluidized bed. Coating some

inert substrate or pharmaceutical particle within the supercritical carbon dioxide fluidized bed

(SCCO2FB) can help to improve the material performance or control the release processes of

the active substance. The SCCO2FB coating processes have many advantages: narrow particle

size distribution, simple process step, simple solvents, moderate temperatures, and easily

controlling the particle fluidizations. A further advantage is that they offer control over solid

state properties, producing either amorphous or crystalline material and sometimes poly-

morphs [7].

1.2. Challenges of supercritical fluidized bed

One of the challenges for industrial applications of chemical technology of the supercritical

fluidized bed is the reliability of continuous running of the reactor. Another challenge of the

supercritical fluidized bed is enlargement. The inner diameter or size of the fluidized bed are

limited to the operating high temperature and high pressure. An increase in the inner diameter

leads to larger wall thickness, which may reduce the heat transfer coefficient. The unclear flow

pattern and transitions processes may affect the chemical reaction efficiency. The theories of

optimal matching of mass, momentum, heat, and chemical reaction are still not perfect.

1.3. Important issues within the supercritical fluidization

The design and operation of the fluidized bed reactor are greatly dependent on the under-

standing of the two-phase flow characteristics in the fluidized bed. An exact determination of

flow patterns in fluidized bed reactor will help to keep the chemical reaction under suitable

conditions. The evolution of flow patterns, key design parameters (minimum fluidization
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velocity, minimum bubbling velocity, bed expansion rate, etc.) of the supercritical fluidized bed

are important issues for perfecting the theory of the supercritical fluidized bed.

Although the experimental investigations of the supercritical fluidized bed are still limited, the

flow patterns and their boundaries of the supercritical fluidized bed have been gradually

obtained, and the correlations of the minimum fluidization velocity, homogenous bed expan-

sion rate and minimum bubbling velocity, transition velocity and turbulent velocity were also

partially proposed based on the experimental data. They can help readers to understand the

basic two-phase flow characteristics and achieve a calculation of design work.

2. Experiment and simulation

2.1. Experiment study

Tarmy et al. [8] studied the three-phase flow characteristics of fluidized beds under a pressure

of 17 MPa and temperature of 450�C. Jiang et al. [9] investigated bed contraction and expan-

sion in a gas–liquid–solid fluidized bed at pressures from 0.1 to 17.4 MPa and temperatures

from 20 to 94�C. Liu et al. [10] operated a CO2-fluidized bed system from ambient to 9.4 MPa.

The fluidized bed is a stainless steel column with 25 mm i.d. and 1.2 m height. They experi-

mentally studied the fluidization of Geldart Group A, B, and D particles in CO2 under ambient

to supercritical conditions. They found that fluidization of the supercritical CO2 fluidized bed

was intermediate between the classical aggregative (gas-solid system) and particulate (liquid-

solid system) fluidizations. Marzocchella and Salatino [11] fluidized Geldart Group A and B

particles by CO2 at temperature of 35�C with pressure ranging from 1 to 8 MPa. The fluidiza-

tion column consisted of a lower section made of a polycarbonate pipe with height of 600 mm

and inner diameter of 30 mm and a higher stainless steel upper section with height of 700 mm.

The temperature of CO2 varies from ambient to 80�C. The pressure varies from ambient to

100 bar and regulated by a back pressure regulating valve. The maximum flow rate was up to

100 kg h-1. Pressure drop transducer and a hot wire anemometer were applied to measure the

fluctuations signals, pressure drop, and average voidage. The fluidization regimes of fixed

bed, homogeneous bed expansion, bubbling zone, and turbulent regime were mapped. Vogt

et al. investigated the fluidization behaviors of supercritical CO2-fluidized bed with pressure

up to 30 MPa [12]. The experimental system was designed with a maximum operating pres-

sure of 35 MPa and a maximum CO2 flow of 50 kg � h�1. The largest steel autoclave had a

volume of 2.5 · 10�3 m3 with inner diameter of 39 or 21 mm. They provided a comprehensive

picture for the supercritical CO2-fluidized bed when the superficial velocity was not very high.

Potic et al. [13] visually studied the fluidization process of Geldart Group A particles in high

pressure water within a cylindrical quartz reactor with an internal diameter of 1.0 mm in the

range of 0.1–24.4 MPa and 20–500�. Lu et al. [14] experimentally obtained the minimum

fluidization velocity by measuring the pressure drops of a SCWFB with a diameter of 35 mm

for temperature ranging from 360 to 420�C and pressure ranging from 23 to 27 MPa. Wei and

Lu [15] built a SCWFB fluid dynamics teasing systems; the fluidized bed section is made of

stainless steel with 1.2 m height and 35 mm inner diameter. It is designed for the temperature

up to 550�C and the pressure up to 30 MPa. A porous metal foam with bore diameter of 30 μm
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is used as the distributor of the fluidized bed test section, and a metal foam filter is installed in

the exit of the fluidized bed to avoid the escape of the bed materials. They measured the fixed

bed pressure drop, minimum fluidization velocity, and bed expansion, minimum fluidization

bubbling velocity of a water-solid fluidized bed from ambient to supercritical conditions, and

they proposed a flow pattern map of the SCWFB.

2.2. Simulation advance

The fluidization of particles in the supercritical fluidized beds has been simulated by few

researchers. Potic et al. [13] applied a DPM model to qualitatively simulate a micro-fluidized

bed with an inner diameter of 1 mm. The model provided consistent flow structures with the

tested results in the sub-critical and supercritical zones. Vogt et al. [16] developed a

compromised model to compute the movement of bubbles in a SCCO2FB on the basis of

empirical correlations. The model describes local fluid dynamics within the SCCO2FB by

treating the surrounding emulsion phase as a continuum and bubble as the other phase.

Rodriguez-Rojo and Cocero [17] simulated a SCCO2FB with an Eulerian two-flow model

incorporating the classical drag model of Gidaspow. Wei et al. [18] simulated the feeding

methods of a SCW fluidized bed reactor based on the Eulerian two-flow model incorporating

particle kinetic theory. Bubbling phenomenon of Geldart Group B particles was observed in

the simulation results. Lu et al. [19] derived a non-sphere drag equation to determine the

momentum transfer between non-sphere particles and fluid in a dilute suspension system. A

combination drag of the non-spherical particle drag model and the Ergun equation has been

validated by comparing experimental data of the SCWFB. More recently, Lu et al. [20, 21]

studied the fluidization process of Geldart Group B particles in SCW by a CFD-DEM model.

Fluidization transition of fixed–homogeneous-bubbling zone was observed in the simulation

work. The two-fluid model and CFD-DEM model are two effective simulation method to

investigate the fluid dynamics of the supercritical fluidized bed.

3. Flow dynamic in the supercritical fluidized bed

Fixed bed pressure drop, minimum fluidization velocity, minimum bubbling velocity, homoge-

nous expansion rate, bubble properties and transitions, and turbulence flow regimes of the

supercritical fluidized bed are summarized. The flow characteristics of each flow regime are

analyzed. The correlations for the key parameters are proposed. In this part, the results of

measured method or simulated method for obtaining these parameters are discussed. The prop-

erties of SCWand SCCO2 used in the experiments were shown in Tables 1 and 2, respectively.

P/MPa 27 27 27 27 27 25 23 23

T/�C 201 350 400 430 479 386 421 406

ρf/kg.m�
3 880.1 616.1 200.0 150.5 108.2 283.8 112.2 136.5

μf/10�
5 Pa∙s 13.5 7.16 3.12 2.96 3.04 3.67 2.71 2.75

Table 1. Properties of SCW.
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3.1. Fixed bed pressure drop

Fixed bed pressure drop is greatly affected by properties of fluid (density and viscosity), solid

properties (diameter, density, and shape factor), and superficial velocity and operation condi-

tions. The description of the fixed bed pressure drop is a key element in the calculation of the

minimum fluidization velocity. The calculation of fixed bed pressure drop can be achieved by

Ergun equation,

ΔP

L
¼ a

ð1� εÞ2

ε3
·

μu

ðψdpÞ
2
þ b

1� ε

ε3
·

ρfu
2

ψdp
ð1Þ

whereΔP is the pressure drop, μ is the viscosity of fluid, ρf is the density of fluid, ε is the fixed bed

voidage, dp is the equivalent volume diameter of the particle, and ψ is the sphericity. The param-

eters a and b are 1.50 and 1.75, respectively, which are from the investigations of Ergun [22]. Ergun

equation has been accepted to calculate the fixed bed pressure dropwidely in literature [23].

Figure 1(a) shows the bed pressure drop vs. superficial velocity at temperature from ambient to

supercritical zone. The pressure drop increased with an increase in the superficial velocity. An

elevated temperature greatly affects bed pressure drop, and the main reason is the density and

viscosity of high pressure water decrease with an increase in temperature. Figure 1(b) shows the

simulated instantaneous bed pressure drop under each superficial velocity was time-averaged,

and the relationship between bed pressure drop and fluidization number (superficial velocity

divided by umf). When the superficial velocity is below the minimum fluidization velocity umf,

the bed pressure drop increases with the increasing superficial velocity. When the superficial

velocity is above the minimum fluidization velocity, the curve of the bed pressure become flat.

Wei and Lu [15] found the deviation of Ergun equation was about�30%, which was suitable for

predicating fixed bed pressure drop in the sub-critical and supercritical zones.

Figure 2 shows the pressure drop of SCCO2-fluidized bed. The experimental data are provided

by Marzocchella and Salatino [11], and Vogt et al. [12]. It was found that Ergun equation was

generally giving a good description of the measured relationship between pressure drop and

superficial velocity. Considering the different supercritical fluids and operating pressures and

temperature from ambient to supercritical zone, Ergun’s equation is also well applicable for

fixed bed flow with a supercritical fluid.

3.2. Minimum fluidization velocity

The minimum fluidization velocity serves as a critical parameter for the design and operation of

fluidized bed. The determination ofminimum fluidization velocity is conventionally based on the

P/MPa 0.1 2 4 6 8 9.1 10.1 14.8 17.9 24.8

T/�C 18 35 35 35 35 54 57 56 57 57

ρf/kg.m
�3 1.8 36 85 150 480 266.8 316.4 637.2 707.1 799.1

μf/10
�5Pa∙s 1.46 1.65 1.73 1.91 4.18 2.25 2.49 4.92 5.77 7.13

Table 2. Properties of SCCO2.
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curve of experimentally measured pressure drop vs. superficial velocity. The minimum fluidiza-

tion velocity was determined by the turning point of the curves, as shown in Figures 1 and 2.

The minimum fluidization velocity is a function of temperature and pressure for Geldart-A and

Geldart-B particles. The minimum fluidization velocity increased with an increase in tempera-

ture. The results are attributed to the decrease in density and viscosity of water induces a larger

relative velocity for achieving force balance of particles in fluidization. Wei and Lu [15] proposed

that an empirical equation of minimum fluidization velocity was achieved for fluidization of

Geldart-B and Geldart-A particles in water from ambient zone to supercritical zone. The correla-

tion combined the experimental data in supercritical zone and the expression is shown as follows

Remf ¼ 6:17 · 10�4Ar0:9324, 70 < Ar < 52000 ð2Þ

where Ar is the Archimedes number Ar ¼ gd3pρf ðρs � ρf Þ=μ
2
f .

Figure 1. Bed pressure drop vs. superficial velocity for water-solid fluidized bed: (a) experimental data [15] and (b)

simulation results by CFD-DEM model [20].

Figure 2. Bed pressure drop vs. superficial velocity for SCCO2 fluidized bed: (a) Marzocchella and Salatino [11], and (b)

Vogt et al. [12].
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In literature, Wen and Yu [24] equation has been usually used to calculate the minimum

fluidization velocity of fluidized bed, even at high pressure conditions. Vogt et al. [12] found

Wen and Yu equation predicated the minimum fluidization velocity with an average error of

14.3% in a SCCO2 fluidized bed. Rodríguez-Rojo and Cocero [17] also used Wen and Yu

equation to determine the minimum fluidization velocity in the simulation work. Marzocchella

and Salatino [11] used Chitester et al. [25] equation to calculate the minimum fluidization

velocity of the supercritical CO2 fluidized bed. Wei and Lu [15] have examined the applicabil-

ity of those reported correlations in SCW fluidized bed. It was found that Wen and Yu

equation predicated acceptable minimum fluidization velocity from ambient to supercritical

conditions, and the deviations of most predicated results are within �30%. However, Chitester

et al. equation predicated much higher minimum fluidization velocities than the experimental

data.

Chitester et al. equation

Remf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð28:7Þ2 þ 0:0494Ar

q

� 28:7 ð3Þ

Wen and Yu equation

Remf ¼ ð33:72 þ 0:0408ArÞ0:5 � 33:7 ð4Þ

3.3. Bed expansion

Figure 3 shows the curves of bed voidage vs. superficial velocity in typical operating conditions

for the SCW fluidized bed. The slopes of the curves after the turning point were obviously lower

than that before the turning point. Similar phenomenawere also observed in the SCCO2 fluidized

bed, as shown inFigure 4. The turningpoints of the voidage curves indicated bubbling occurrence

in the fluidized bed. The homogenous bed expansion existed before the turning point and after

which bubbling was formed. The experimental results show that the transitions from homoge-

nous to bubbling occur in several supercritical conditions for both Geldart A and B particles.

Figure 5 shows the relation curve of bed pressure drop and superficial velocity vs. time. It

can be observed that the curve of bed pressure drop vs. time can be divided into three stages.

Figure 3. Typical results of voidage vs. superficial velocity for the SCW fluidized bed [20].
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Stage I, the bed pressure drop increases step by step with the superficial velocity and without

fluctuation when u < umf. Stage II, the pressure drop stops increasing with superficial velocity

and fluctuates around a fixed value and decays rapidly when umf < u < umb. Stage III, the

pressure fluctuates more violently with the increasing of superficial velocity when u > umb.

Figure 6 shows three snapshots of particles in the three stages. Figure 6(a) shows the fixed bed

almost no particle moves. Figure 6(b) shows the homogeneous fluidization regime without

bubbling fluidization in SCW fluidized bed. Figure 6(c) shows a bubble fluidization. Bubbles

are quite small and scattered in SCW fluidized bed and the bed expansion is more obvious. The

distribution characteristics of bubbles benefit the mixing state of fluid phase and solid phase.

For predicating the homogenous bed expansion rate at supercritical pressure, Richardson and

Zaki equation [26] was modified based on the experimental data. The basic equation was given:

Figure 4. Typical results of voidage vs. superficial velocity for the SCCO2 fluidized bed Vogt et al. [12], and Marzocchella

and Salatino [11].

Figure 5. Bed pressure drop and superficial velocity vs. time for the SCW fluidized bed [21].
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u ¼ utε
n ð5Þ

where ut is the terminal velocity, which can be calculated by correlation from Haider and

Levenspiel [27].

Vogt et al. [12] proposed an empirical correlation for homogeneous bed expansion in the

SCCO2 fluidized bed, which was given:

n ¼ 11:8Re�0:23
t ð6Þ

Wei and Lu [15] provided a modified correlation for homogeneous bed expansion in the SCW

fluidized bed, which is shown as follows,

n ¼ 10:364Re�0:09973
t , 2 < Ret < 270 ð7Þ

The exponent n obtained from linear fitting of experimental data, thus they diverge each other

greatly. The deviation of Eqs. (6) and (7) may indicate that the effects of fluid properties or

operating conditions on bed expansion rates are remarkable. Care should be taken to use the

bed expansion correlation. The correlation should be carefully used for the design of sub- and

supercritical water or SCCO2 fluidized bed.

The Gibilaro’s equation [28] was used to predicate the bed expansion of SCCO2 fluidized bed

in literature [17].

ΔP ¼
18

Rep
þ 0:33

� �

�
ρfu

2H

dp
ð1� εÞε�4:8 ð8Þ

Figure 6. Snapshots of particles in various fluidization regimes [20].
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3.4. Bubbling fluidization

3.4.1. Minimum bubbling velocity

The minimum bubble velocity can be obtained from the figure of the standard deviation σ of

pressure drop and heat transfer coefficient vs. superficial velocity in the vicinity of the incipient

fluidization and incipient bubbling velocities. Figure 7 shows the simulated and experimen-

tally measured method of the minimum bubbling velocity. As shown in Figure 7, before

bubbling, the standard deviations kept nearly invariable with an increase in the superficial

velocity. After bubbling, an approximately linear relationship between the standard deviation

σ and superficial velocity were observed. The onset increase in σ was related to the bubble

occurrence. Based on the two methods, the minimum bubbling velocities were obtained.

For the classical gas-solid fluidized bed, Abrahamsen and Geldart correlation is usually used

to calculate the minimum bubbling velocity [29]. However, Vogt et al. [12] found Abrahamsen

and Geldart correlation predicated a much higher minimum bubbling velocity for the SCCO2

fluidized bed. They suggested to use Foscolo and Gibilaro [30] criterion to predicate the εb, and

then use Eqs. (5) and (6) to calculate the minimum bubbling velocity by intruding the minimum

Figure 7. Typical results of variance of variables in the vicinity of incipient fluidization and bubbling: (a) SCW fluidized

bed [15], (b) SCCO2 fluidized bed [11], and (c) SCW fluidized bed by CFD-DEM simulation [21].
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fluidization velocity and minimum fluidization voidage. Foscolo and Gibilaro found system is

homogeneous when the kinematic wave velocity is higher than the dynamic wave velocity,

otherwise bubble occurs. When the two velocities are equal, the limit of stability of the system

is reached. The criterion is expressed as:

Ud �Uk

Uk
¼

þ : Homogeneous

0 : Stability limit

� : Bubbling

8

>

<

>

:

ð9Þ

The kinematic wave speed is

Uk ¼ nutð1� εÞεn�1 ð10Þ

The dynamic wave velocity is

Ud ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:2gdpð1� εÞðρs � ρf Þ=ρs

q

ð11Þ

However, Wen and Lu [15] evaluated the adaptability of Foscolo and Gibilaro criterion for the

water-solid fluidized bed from ambient to supercritical conditions. They found that Foscolo

and Gibilaro’s criterion qualitatively predicated bubbling occurrence, the transformation pro-

cesses of homogenous to bubbling were not captured. Therefore, it was difficult to use Foscolo

and Gibilaro’s criterion to predicate the minimum bubbling velocity for the SCW fluidized

bed. They provided a polynomial function of Archimedes number for calculating the mini-

mum bubbling velocity for the SCWFB.

Remb ¼ 2 · 10�8Ar2 � 9 · 10�8Arþ 1:4608, 700 < Ar < 34000 ð12Þ

3.4.2. Visible bubble flow rate

Based on the investigations of Vogt et al. [12], the visible bubble flow is multiplying the bubble

gas holdup with the local mean bubble rise velocity,

Vb ¼ εbub ð13Þ

The linear relationship between the visible bubble flow and the excess velocity was observed in

Figure 8.

Vb ¼ ϕðu� umbÞ ð14Þ

where ϕ = 0.6. When the emulsion phase voidage and bed average voidage are known, the

bubble voidage can be obtained εb ¼ ðε� εeÞ=ð1� εeÞ. Then the bubble rising velocity can be

calculated by Eq. (13). Eq. 14 reflects a linear relationship between the visible bubble flow and

the excess velocity, which is adapted to the ambient conditions. Although the correlation has

not been validated for the SCWFB, the equation is suggested to evaluate bubble rising velocity

in the situation of lack of reliable formula for predication.
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3.4.3. Effects of fluid states on the bubbling fluidization

Based on the Eulrian two fluid models and non-spherical particle drag model, the fluidized

processes of the SCWFB were simulated [19]. Figure 9 shows the solid distribution of the

fluidized bed using different states of water as the fluidization medium and the properties of

the SCW were shown in Table 3. The superficial velocity was set as 3.5 umf. Figure 9(a)–(c)

describes the ambient and sub-critical water-solid system, in which particulate fluidization

and homogeneous bed expansion are two typical characteristics. Figure 9(g) and (h) represents

the flow characteristics of the vapor-solid system. Figure 9(d)–(f) represents the SCW-solid

flow system. In the SCW zone, the pseudo-homogeneous expansion of the bed was similar to

the liquid-solid system, but the bubbles occurrence was similar to the gas-solid system. Liu

et al. [10] stated that the fluidization in the supercritical CO2 fluidized bed was an intermediate

state between bubbling and homogeneous fluidization through an experimental analysis. The

Figure 8. Visible bubble flow for glass beads in the SCCO2 fluidized bed [12].

Figure 9. Solid distribution of fluidized bed at different states of water with u / umf = 3.5 [19].
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intermediate fluidization has the characteristics of the two-phase flow in both bubbling and

homogeneous fluidization. Obviously, the present simulation results showed an intermediate

state of the SCW fluidized bed, which was a pseudo-homogeneous expansion with a large

number of small bubbles. With an increase in the discrimination number Dn, the fluidization of

water-solid system evolved from particulate to intermediate to aggregative.

3.5. Turbulence fluidization and transition zone

Marzocchella and Salatino [11] observed the σ2
ΔP1=ΔP

2
1 vs. u pattern of the SCCO2 fluidized bed

is the well-known bell-shaped curve, as shown in Figure 10. With an increase in superficial

velocity, σ2
ΔP1=ΔP

2
1 increase first and then decrease. Gas superficial velocities at which σ2

ΔP1=ΔP
2
1

is at a maximum and at which it levels off, have been assumed, respectively, as the beginning

UC and the endUk of the transition to the turbulent fluidization regime. Note that no detectable

decrease in the pressure drop across the bed was observed over several minutes of operation of

the bed even at fluid superficial velocities over Uk. Based on the experimental investigations,

Marzocchella and Salatino [11] suggested Nakajima et al. [31] equation to calculate the transi-

tion velocity, and Bi and Fan [32] correlation to determine the turbulent velocity.

Fluid states Ambient Subcritical SCW Steam

No. (a) (b) (c) (d) (e) (f) (g) (h)

P/MPa 0.1 6.3 25.1 25.4 25.2 25.5 6 0.1

T/�C 20 207 224 387 403 428 400 400

ρf/kg.m
�3 998.2 859.9 854.1 296.7 162.9 128.7 21.1 0.322

μf/10
�5 Pa∙s 100.1 13.06 12.48 3.787 2.913 2.87 2.437 2.446

Table 3. Simulation conditions and parameters in Figure 9.

Figure 10. Dimensionless variance of the bed pressure drop vs. superficial fluid velocity for the SCCO2 fluidized bed.
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Nakajima et al. equation is,

Rec ¼ 0:663Ar0:467 ð15Þ

Bi and Fan correlation is,

Rek ¼
0:601Ar0:695 Ar ≤ 125
2:28Ar0:419 Ar > 125

�

ð16Þ

4. Flow pattern maps of supercritical fluidized bed

Mapping flow pattern based on experimental data is a useful method to characterize the flow

regimes and transitions. For the classical gas-solid or liquid-solid fluidized bed, maps of

pressure drop vs. supercritical velocity, slip velocity vs. solid fraction, voidage vs. supercritical

velocity, DP standard deviations vs. voidage, non-linear parameters vs. supercritical velocity,

dimensionless diameter vs. dimensionless gas velocity, and Reynolds number vs. Archimedes

number have been investigated [33, 34, 35]. Those maps can be classified into two groups:

dimension and dimensionless. Obviously, the dimensional flow pattern maps are hard to be

used in present situation because the fluid state varies greatly from ambient to supercritical

conditions. For example, although a plot of velocity vs. fluid density shows a clear physical

meaning, it cannot include all the cases for different particles. The dimensionless flow pattern

maps are promising to solve the shortcoming. The horizontal ordinates of dimensionless gas

velocity or Archimedes number in the traditional flow maps have been proved effective to the

classical fluidized bed. However, they are useless for present situations because they cannot

discriminate the different transitions of flow regimes. The transitions of flow regimes are

mainly depending on the properties of each phases and operating parameters. Obviously, just

using Archimedes number cannot reflect effects of both sides. The main obstacle of mapping

the flow pattern is describing the horizontal ordinates reasonably.

4.1. SCWFB

Wei and Lu [15] drew the flow pattern maps with abscissa Dn demarcating the three transi-

tions processes and ordinate charactering the operating parameters. The discrimination num-

ber Dn was proposed by Liu et al. [10] to demarcate the fluidization quality.

Dn ¼
Ar

Remf

� �

ρs � ρf

ρf

 !

ð17Þ

The discrimination umber shows the effect of properties of two phases in Ar �
ρs�ρf
ρf

� �

, and the

effect of operating parameters in 1
Remf

. This paper found the discrimination number Dn can

demarcate the flow pattern evolution processes. Based on the experimental analysis, fluidiza-

tion state of fixed-homogeneous (F-H), fixed-homogeneous-bubbling (F-H-B) and fixed-

bubbling (F-B) was summarized as follows:
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Dn < 1:2· 104

1:2· 104 ≤Dn < 6:4 · 104

Dn ≥ 6:4· 10
4

F�H

F�H � B

F� B

8

>

>

<

>

>

:

ð18Þ

The discrimination number Dn of 1.2 · 104 is little higher than the experimental results by Liu

et al. [10]. The boundary of F-H fluidization can be determined by the minimum fluidization

velocity correlation Eq. (2), and the boundary of F-B and H-B fluidization can be calculated by

the minimum bubbling velocity correlation Eq. (12).

4.2. SSCO2FB

Marzocchella and Salatino [11] gave a flow pattern map of Reynolds numbers Re vs. Archi-

medes number for the SCCO2 fluidized bed. In the original map, they calculated Remf

according to Chitester et al. [25] correlation, Rec by Nakajima et al. [31] correlation, and Rek

could be calculated by Bi and Fan [32]. Here, the map was redrawn by adding the Wen and

Yu equation to evaluate the minimum fluidization velocity as shown in Figure 11. What’s

more, the minimum bubble velocity is suggested to be determined according to Foscolo and

Gibilaro’s criterion.

5. Conclusion

Supercritical bed is a kind of new and promising reactors. This work tries to conduct a

comprehensive study on supercritical fluidized bed to provide information of basic two-phase

flow and theories of design and operation. A review of main research progress is illustrated

and important results were summarized. The main conclusions are obtained as follow:

Figure 11. Flow pattern for the SCCO2 fluidized bed.
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1. Fixed bed pressure drop in supercritical conditions can be predicated by Ergun equation.

2. Wei and Lu correlation Eq. (2) was suggested as a new correlation for minimum fluidiza-

tion velocity of water-solid fluidized bed in high pressure, near-critical and supercritical

conditions. Wen and Yu equation Eq. (4) was acceptable for calculating the minimum

fluidization velocity of the SCWFB and SCCO2FB.

3. The homogeneous bed expansion rate of supercritical fluidized bed can be described by

modified Richard and Zaki equation. The index function n can be correlated by Wei and Lu

equation Eq. (7) and Vogt et al. equation Eq. (6) for the SCWFB and SCCO2FB, respectively.

4. The bubbling fluidization was found for both Geldart A and B particles in the supercritical

fluidized bed. An empirical correlation of minimum bubbling velocity in Eq. (12) was

achieved by Wei and Lu for the SCWFB. Vogt et al. provided a method to determine the

minimum bubbling velocity of the SCCO2FB by using Foscolo and Gibilaro criterion.

5. The fluidization state of the supercritical fluidized bed can be viewed as an intermediate

between classical gas-solid and liquid-solid fluidizations. The visible bubble flow rate can

be predicated by Vogt et al. equation Eq. (14).

6. For the SCWFB, discrimination number Dn was used to determine the fluidization

regimes from ambient to supercritical conditions. Fluidization of F-H was found when

Dn was below 1.2 · 104; fluidization of F-H-B was found when Dn was between 1.2 · 104

and 6 · 104, and fluidization of F-B was found when Dn was above 6 · 104. As suggested

by Marzocchella and Salatino [11], Nakajima et al. [31] equation was used to calculate the

transition velocity, and Bi and Fan [32] correlation was applied to determine the turbulent

velocity of the SSCO2FB. A flow pattern map of Reynolds numbers Re vs. Archimedes

number has been provided for the SSCO2FB.
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Nomenclature

Ar Archimedes number (Ar ¼ gd3vρf ðρs � ρf Þ=μ
2
f )

d Particle diameter (m)

db Bubble equivalent diameter (m)

Dn Discrimination number

FB Fluidized bed

g Acceleration due to gravity (m s�2)

n Index function
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