15 research outputs found

    Vaccination with Human Induced Pluripotent Stem Cells Creates an Antigen-Specific Immune Response Against HIV-1 gp160

    Get PDF
    Induced pluripotent stem cells (iPSCs) are artificially derived from somatic cells that have been transduced with defined reprogramming factors. A previous report has indicated the possibility of using iPSCs as an immune stimulator to generate antigen-specific immunity. In our current study, we have investigated whether human iPSCs (hiPSCs) have the ability to enhance specific immune response against a human immunodeficiency virus type 1 (HIV-1) antigen in a xenogenic mouse model. Our results show that BALB/c mice immunized with hiPSCs transduced with an adenoviral vector encoding HIV-1 gp160 exhibited prominent antigen-specific cellular immune responses. We further found that pre-treatment of hiPSCs with ionizing radiation promotes the secretion of pro-inflammatory cytokines such as interleukin-1 alpha (IL-1α), IL-12, and IL-18. These cytokines might promote the activation of antigen-presenting cells and the effective induction of cellular immunity. Our present findings thus demonstrate that a hiPSCs-based vaccine has the potential to generate cellular immunity against viral antigens such as HIV-1 gp160 in a xenogenic condition

    Dual-frequency injection-locked continuous-wave near-infrared laser

    Get PDF
    We report a dual-frequency injection-locked continuous-wave near-infrared laser. The entire system consists of a Ti:sapphire ring laser as a power oscillator, two independent diode-lasers employed as seed lasers, and a master cavity providing a frequency reference. Stable dual-frequency injection-locked oscillation is achieved with a maximum output power of 2.8 W. As fundamental performance features of this laser system, we show its single longitudinal/transverse mode characteristics and practical power stability. Furthermore, as advanced features, we demonstrate arbitrary selectivity of the two frequencies and flexible control of their relative powers by simply manipulating the seed lasers.Comment: 8 pages, 4 figure

    A key metabolic gene for recurrent freshwater colonization and radiation in fishes

    Get PDF
    Colonization of new ecological niches has triggered large adaptive radiations. Although some lineages have made use of such opportunities, not all do so. The factors causing this variation among lineages are largely unknown. Here, we show that deficiency in docosahexaenoic acid (DHA), an essential ω-3 fatty acid, can constrain freshwater colonization by marine fishes. Our genomic analyses revealed multiple independent duplications of the fatty acid desaturase gene; Fads2; in stickleback lineages that subsequently colonized and radiated in freshwater habitats, but not in close relatives that failed to colonize. Transgenic manipulation of; Fads2; in marine stickleback increased their ability to synthesize DHA and survive on DHA-deficient diets. Multiple freshwater ray-finned fishes also show a convergent increase in; Fads2; copies, indicating its key role in freshwater colonization

    Data from: A key metabolic gene for recurrent freshwater colonization and radiation in fishes

    No full text
    Colonization of new ecological niches has triggered large adaptive radiations. Although some lineages have made use of such opportunities, not all do so. The factors causing this variation among lineages are largely unknown. Here, we show that deficiency in docosahexaenoic acid (DHA), an essential ω-3 fatty acid, can constrain freshwater colonization by marine fishes. Our genomic analyses revealed multiple independent duplications of the fatty acid desaturase gene Fads2 in stickleback lineages that subsequently colonized and radiated in freshwater habitats, but not in close relatives that failed to colonize. Transgenic manipulation of Fads2 in marine stickleback increased their ability to synthesize DHA and survive on DHA-deficient diets. Multiple freshwater ray-finned fishes also show a convergent increase in Fads2 copies, indicating its key role in freshwater colonization
    corecore