50 research outputs found

    Characteristic profile of antibody responses to PPD, ESAT-6, and CFP-10 of Mycobacterium tuberculosis in pulmonary tuberculosis suspected cases in Surabaya, Indonesia

    Get PDF
    Accurate and rapid diagnostic tools are important aspects of managing tuberculosis (TB) cases appropriately. However, the sensitivity and specificity of diagnostic kits based on immune response such as the tuberculin skin test (TST) and interferon gamma release assay (IGRA) are still debated. Thus, the exploration and assessment of specific biomarker-targeted antibodies are needed for the development of an accurate and rapid diagnostic tool. The present study was conducted in patients with a respiratory problem suspected to be TB at Dr. Soetomo Hospital, Surabaya, Indonesia. Among 102 patients tested by GeneXpert and AFB, 59 serum samples were from cases retrospectively determined to have active TB. A total of 102 serum of healthy controls (HC) was also collected. The PPD antigen and the recombinant CFP-10 and ESAT-6 proteins were prepared. Antibody responses against these proteins were evaluated by ELISA. All samples were also screened for the possibility of Mycobacterium avium-intracellulare complex (MAC) infection using Capilla MaC kit. The results showed that TB patients had a significantly higher concentration of IgG antibody in response to PPD than the HC. In addition, the receiver operating characteristic (ROC) curve analysis showed that PPD was acceptable for diagnostic purposes with an AUC value of 0.835 (95% CI 0.770-0.900, p < 0.0001). However, ESAT-6 and CFP-10 had low AUCs, and 32 samples from both groups showed a low concentration of IgA antibody against all antigens. The MAC detection results also showed that the concentration of IgA in the HC group was the highest. The current results indicate that PPD is a better antigen for antibody-based detection of TB than ESAT-6 and CFP-10. Based on the MAC detection assay, 53 people in the HC group were probably infected with rapidly growing nontuberculous mycobacteria (NTM), although antibody response to PPD was low

    Antigenic mimicry-mediated anti-prion effects induced by bacterial enzyme succinylarginine dihydrolase in mice.

    Get PDF
    Prions, the causative agents of prion diseases, are immunologically tolerated because their major component, prion protein (PrP), is a host-encoded molecule. Therefore, no effective prion vaccines have been developed. We previously showed that heterologous bovine and sheep PrP immunizations of mice overcame tolerance by an antigenic mimicry mechanism to efficiently induce anti-PrP auto-antibodies (Abs), significantly prolonging incubation times in mice subsequently infected with the mouse-adapted Fukuoka-1 prion. These results prompted us to investigate if non-mammal derived molecules able to antigenically mimic anti-prion epitopes, could act as prion vaccines. We show here that immunization of mice with recombinant succinylarginine dihydrolase, a bacterial enzyme with a peptide sequence similar to an anti-prion epitope, induced anti-PrP auto-Abs with anti-prion activity and significantly retarded survival times of the mice subsequently infected with Fukuoka-1 prions. These results might open a way for development of a new type of antigenic mimicry-based prion vaccine

    Ghrelin Treatment of Cachectic Patients with Chronic Obstructive Pulmonary Disease: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial

    Get PDF
    BACKGROUND: Pulmonary cachexia is common in advanced chronic obstructive pulmonary disease (COPD), culminating in exercise intolerance and a poor prognosis. Ghrelin is a novel growth hormone (GH)-releasing peptide with GH-independent effects. The efficacy and safety of adding ghrelin to pulmonary rehabilitation (PR) in cachectic COPD patients were investigated. METHODOLOGY/PRINCIPAL FINDINGS: In a multicenter, randomized, double-blind, placebo-controlled trial, 33 cachectic COPD patients were randomly assigned PR with intravenous ghrelin (2 µg/kg) or placebo twice daily for 3 weeks in hospital. The primary outcomes were changes in 6-min walk distance (6-MWD) and the St. George Respiratory Questionnaire (SGRQ) score. Secondary outcomes included changes in the Medical Research Council (MRC) scale, and respiratory muscle strength. At pre-treatment, serum GH levels were increased from baseline levels by a single dose of ghrelin (mean change, +46.5 ng/ml; between-group p<0.0001), the effect of which continued during the 3-week treatment. In the ghrelin group, the mean change from pre-treatment in 6-MWD was improved at Week 3 (+40 m, within-group p = 0.033) and was maintained at Week 7 (+47 m, within-group p = 0.017), although the difference between ghrelin and placebo was not significant. At Week 7, the mean changes in SGRQ symptoms (between-group p = 0.026), in MRC (between-group p = 0.030), and in maximal expiratory pressure (MEP; between-group p = 0.015) were better in the ghrelin group than in the placebo group. Additionally, repeated-measures analysis of variance (ANOVA) indicated significant time course effects of ghrelin versus placebo in SGRQ symptoms (p = 0.049) and MEP (p = 0.021). Ghrelin treatment was well tolerated. CONCLUSIONS/SIGNIFICANCE: In cachectic COPD patients, with the safety profile, ghrelin administration provided improvements in symptoms and respiratory strength, despite the lack of a significant between-group difference in 6-MWD. TRIAL REGISTRATION: UMIN Clinical Trial Registry C000000061

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore