381 research outputs found
Revealing the electronic structure of a carbon nanotube carrying a supercurrent
Carbon nanotubes (CNTs) are not intrinsically superconducting but they can
carry a supercurrent when connected to superconducting electrodes. This
supercurrent is mainly transmitted by discrete entangled electron-hole states
confined to the nanotube, called Andreev Bound States (ABS). These states are a
key concept in mesoscopic superconductivity as they provide a universal
description of Josephson-like effects in quantum-coherent nanostructures (e.g.
molecules, nanowires, magnetic or normal metallic layers) connected to
superconducting leads. We report here the first tunneling spectroscopy of
individually resolved ABS, in a nanotube-superconductor device. Analyzing the
evolution of the ABS spectrum with a gate voltage, we show that the ABS arise
from the discrete electronic levels of the molecule and that they reveal
detailed information about the energies of these levels, their relative spin
orientation and the coupling to the leads. Such measurements hence constitute a
powerful new spectroscopic technique capable of elucidating the electronic
structure of CNT-based devices, including those with well-coupled leads. This
is relevant for conventional applications (e.g. superconducting or normal
transistors, SQUIDs) and quantum information processing (e.g. entangled
electron pairs generation, ABS-based qubits). Finally, our device is a new type
of dc-measurable SQUID
Behind the silence of harmony: risk factors for physical and sexual violence among women in rural Indonesia
BACKGROUND: Indonesia has the fourth largest population in the world. Few studies have identified the risk factors of Indonesian women for domestic violence. Such research will be useful for the development of prevention programs aiming at reducing domestic violence. Our study examines associations between physical and sexual violence among rural Javanese Indonesian women and sociodemographic factors, husband's psychosocial and behavioral characteristics and attitudes toward violence and gender roles. METHODS: A cohort of pregnant women within the Demographic Surveillance Site (DSS) in Purworejo district, Central Java, Indonesia, was enrolled in a longitudinal study between 1996 and 1998. In the following year (1999), a cross-sectional domestic violence household survey was conducted with 765 consenting women from that cohort. Female field workers, trained using the WHO Multi-Country study instrument on domestic violence, conducted interviews. Crude and adjusted odds ratios at 95% CI were applied for analysis. RESULTS: Lifetime exposure to sexual and physical violence was 22% and 11%. Sexual violence was associated with husbands' demographic characteristics (less than 35 years and educated less than 9 years) and women's economic independence. Exposure to physical violence among a small group of women (2-6%) was strongly associated with husbands' personal characteristics; being unfaithful, using alcohol, fighting with other men and having witnessed domestic violence as a child. The attitudes and norms expressed by the women confirm that unequal gender relationships are more common among women living in the highlands and being married to poorly educated men. Slightly more than half of the women (59%) considered it justifiable to refuse coercive sex. This attitude was also more common among financially independent women (71%), who also had a higher risk of exposure to sexual violence. CONCLUSIONS: Women who did not support the right of women to refuse sex were more likely to experience physical violence, while those who justified hitting for some reasons were more likely to experience sexual violence. Our study suggests that Javanese women live in a high degree of gender-based subordination within marriage relationships, maintained and reinforced through physical and sexual violence. Our findings indicate that women's risk of physical and sexual violence is related to traditional gender norms
Multiple P2Y receptors couple to calcium-dependent, chloride channels in smooth muscle cells of the rat pulmonary artery
BACKGROUND: Uridine 5'-triphosphate (UTP) and uridine 5'-diphosphate (UDP) act via P2Y receptors to evoke contraction of rat pulmonary arteries, whilst adenosine 5'-triphosphate (ATP) acts via P2X and P2Y receptors. Pharmacological characterisation of these receptors in intact arteries is complicated by release and extracellular metabolism of nucleotides, so the aim of this study was to characterise the P2Y receptors under conditions that minimise these problems. METHODS: The perforated-patch clamp technique was used to record the Ca(2+)-dependent, Cl(- )current (I(Cl,Ca)) activated by P2Y receptor agonists in acutely dissociated smooth muscle cells of rat small (SPA) and large (LPA) intrapulmonary arteries, held at -50 mV. Contractions to ATP were measured in isolated muscle rings. Data were compared by Student's t test or one way ANOVA. RESULTS: ATP, UTP and UDP (10(-4)M) evoked oscillating, inward currents (peak = 13–727 pA) in 71–93% of cells. The first current was usually the largest and in the SPA the response to ATP was significantly greater than those to UTP or UDP (P < 0.05). Subsequent currents tended to decrease in amplitude, with a variable time-course, to a level that was significantly smaller for ATP (P < 0.05), UTP (P < 0.001) and UDP (P < 0.05) in the SPA. The frequency of oscillations was similar for each agonist (mean≈6–11.min(-1)) and changed little during agonist application. The non-selective P2 receptor antagonist suramin (10(-4)M) abolished currents evoked by ATP in SPA (n = 4) and LPA (n = 4), but pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) (10(-4)M), also a non-selective P2 antagonist, had no effect (n = 4, 5 respectively). Currents elicited by UTP (n = 37) or UDP (n = 14) were unaffected by either antagonist. Contractions of SPA evoked by ATP were partially inhibited by PPADS (n = 4) and abolished by suramin (n = 5). Both antagonists abolished the contractions in LPA. CONCLUSION: At least two P2Y subtypes couple to I(Cl,Ca )in smooth muscle cells of rat SPA and LPA, with no apparent regional variation in their distribution. The suramin-sensitive, PPADS-resistant site activated by ATP most resembles the P2Y(11 )receptor. However, the suramin- and PPADS-insensitive receptor activated by UTP and UDP does not correspond to any of the known P2Y subtypes. These receptors likely play a significant role in nucleotide-induced vasoconstriction
A Dual Receptor Crosstalk Model of G-Protein-Coupled Signal Transduction
Macrophage cells that are stimulated by two different ligands that bind to G-protein-coupled receptors (GPCRs) usually respond as if the stimulus effects are additive, but for a minority of ligand combinations the response is synergistic. The G-protein-coupled receptor system integrates signaling cues from the environment to actuate cell morphology, gene expression, ion homeostasis, and other physiological states. We analyze the effects of the two signaling molecules complement factors 5a (C5a) and uridine diphosphate (UDP) on the intracellular second messenger calcium to elucidate the principles that govern the processing of multiple signals by GPCRs. We have developed a formal hypothesis, in the form of a kinetic model, for the mechanism of action of this GPCR signal transduction system using data obtained from RAW264.7 macrophage cells. Bayesian statistical methods are employed to represent uncertainty in both data and model parameters and formally tie the model to experimental data. When the model is also used as a tool in the design of experiments, it predicts a synergistic region in the calcium peak height dose response that results when cells are simultaneously stimulated by C5a and UDP. An analysis of the model reveals a potential mechanism for crosstalk between the Gαi-coupled C5a receptor and the Gαq-coupled UDP receptor signaling systems that results in synergistic calcium release
Pattern Recognition Analysis of Proton Nuclear Magnetic Resonance Spectra of Brain Tissue Extracts from Rats Anesthetized with Propofol or Isoflurane
BACKGROUND: General anesthesia is routinely used as a surgical procedure and its safety has been endorsed by clinical outcomes; however, its effects at the molecular level have not been elucidated. General anesthetics influence glucose metabolism in the brain. However, the effects of anesthetics on brain metabolites other than those related to glucose have not been well characterized. We used a pattern recognition analysis of proton nuclear magnetic resonance spectra to visualize the changes in holistic brain metabolic phenotypes in response to the widely used intravenous anesthetic propofol and the volatile anesthetic isoflurane. METHODOLOGY/PRINCIPAL FINDINGS: Rats were randomized into five groups (n = 7 each group). Propofol and isoflurane were administered to two groups each, for 2 or 6 h. The control group received no anesthesia. Brains were removed directly after anesthesia. Hydrophilic compounds were extracted from excised whole brains and measured by proton nuclear magnetic resonance spectroscopy. All spectral data were processed and analyzed by principal component analysis for comparison of the metabolite profiles. Data were visualized by plotting principal component (PC) scores. In the plots, each point represents an individual sample. The propofol and isoflurane groups were clustered separately on the plots, and this separation was especially pronounced when comparing the 6-h groups. The PC scores of the propofol group were clearly distinct from those of the control group, particularly in the 6-h group, whereas the difference in PC scores was more subtle in the isoflurane group and control groups. CONCLUSIONS/SIGNIFICANCE: The results of the present study showed that propofol and isoflurane exerted differential effects on holistic brain metabolism under anesthesia
Macular hole formation, progression, and surgical repair: case series of serial optical coherence tomography and time lapse morphing video study
<p>Abstract</p> <p>Background</p> <p>To use a new medium to dynamically visualize serial optical coherence tomography (OCT) scans in order to illustrate and elucidate the pathogenesis of idiopathic macular hole formation, progression, and surgical closure.</p> <p>Case Presentations</p> <p>Two patients at the onset of symptoms with early stage macular holes and one patient following repair were followed with serial OCTs. Images centered at the fovea and at the same orientation were digitally exported and morphed into an Audiovisual Interleaving (avi) movie format. Morphing videos from serial OCTs allowed the OCTs to be viewed dynamically. The videos supported anterior-posterior vitreofoveal traction as the initial event in macular hole formation. Progression of the macular hole occurred with increased cystic thickening of the fovea without evidence of further vitreofoveal traction. During cyst formation, the macular hole enlarged as the edges of the hole became elevated from the retinal pigment epithelium (RPE) with an increase in subretinal fluid. Surgical repair of a macular hole revealed initial closure of the macular hole with subsequent reabsorption of the sub-retinal fluid and restoration of the foveal contour.</p> <p>Conclusions</p> <p>Morphing videos from serial OCTs are a useful tool and helped illustrate and support anterior-posterior vitreofoveal traction with subsequent retinal hydration as the pathogenesis of idiopathic macular holes.</p
Temozolomide- and fotemustine-induced apoptosis in human malignant melanoma cells: response related to MGMT, MMR, DSBs, and p53
Malignant melanomas are highly resistant to chemotherapy. First-line chemotherapeutics used in melanoma therapy are the methylating agents dacarbazine (DTIC) and temozolomide (TMZ) and the chloroethylating agents BCNU and fotemustine. Here, we determined the mode of cell death in 11 melanoma cell lines upon exposure to TMZ and fotemustine. We show for the first time that TMZ induces apoptosis in melanoma cells, using therapeutic doses. For both TMZ and fotemustine apoptosis is the dominant mode of cell death. The contribution of necrosis to total cell death varied between 10 and 40%. The O6-methylguanine-DNA methyltransferase (MGMT) activity in the cell lines was between 0 and 1100 fmol mg−1 protein, and there was a correlation between MGMT activity and the level of resistance to TMZ and fotemustine. MGMT inactivation by O6-benzylguanine sensitized all melanoma cell lines expressing MGMT to TMZ and fotemustine-induced apoptosis, and MGMT transfection attenuated the apoptotic response. This supports that O6-alkylguanines are critical lesions involved in the initiation of programmed melanoma cell death. One of the cell lines (MZ7), derived from a patient subjected to DTIC therapy, exhibited a high level of resistance to TMZ without expressing MGMT. This was related to an impaired expression of MSH2 and MSH6. The cells were not cross-resistant to fotemustine. Although these data indicate that methylating drug resistance of melanoma cells can be acquired by down-regulation of mismatch repair, a correlation between MSH2 and MSH6 expression in the different lines and TMZ sensitivity was not found. Apoptosis in melanoma cells induced by TMZ and fotemustine was accompanied by double-strand break (DSB) formation (as determined by H2AX phosphorylation) and caspase-3 and -7 activation as well as PARP cleavage. For TMZ, DSBs correlated significantly with the apoptotic response, whereas for fotemustine a correlation was not found. Melanoma lines expressing p53 wild-type were more resistant to TMZ and fotemustine than p53 mutant melanoma lines, which is in marked contrast to previous data reported for glioma cells treated with TMZ. Overall, the findings are in line with the model that in melanoma cells TMZ-induced O6-methylguanine triggers the apoptotic (and necrotic) pathway through DSBs, whereas for chloroethylating agents apoptosis is triggered in a more complex manner
Arthroscopy vs. MRI for a detailed assessment of cartilage disease in osteoarthritis: diagnostic value of MRI in clinical practice
<p>Abstract</p> <p>Background</p> <p>In patients with osteoarthritis, a detailed assessment of degenerative cartilage disease is important to recommend adequate treatment. Using a representative sample of patients, this study investigated whether MRI is reliable for a detailed cartilage assessment in patients with osteoarthritis of the knee.</p> <p>Methods</p> <p>In a cross sectional-study as a part of a retrospective case-control study, 36 patients (mean age 53.1 years) with clinically relevant osteoarthritis received standardized MRI (sag. T1-TSE, cor. STIR-TSE, trans. fat-suppressed PD-TSE, sag. fat-suppressed PD-TSE, Siemens Magnetom Avanto syngo MR B 15) on a 1.5 Tesla unit. Within a maximum of three months later, arthroscopic grading of the articular surfaces was performed. MRI grading by two blinded observers was compared to arthroscopic findings. Diagnostic values as well as intra- and inter-observer values were assessed.</p> <p>Results</p> <p>Inter-observer agreement between readers 1 and 2 was good (kappa = 0.65) within all compartments. Intra-observer agreement comparing MRI grading to arthroscopic grading showed moderate to good values for readers 1 and 2 (kappa = 0.50 and 0.62, respectively), the poorest being within the patellofemoral joint (kappa = 0.32 and 0.52). Sensitivities were relatively low at all grades, particularly for grade 3 cartilage lesions. A tendency to underestimate cartilage disorders on MR images was not noticed.</p> <p>Conclusions</p> <p>According to our results, the use of MRI for precise grading of the cartilage in osteoarthritis is limited. Even if the practical benefit of MRI in pretreatment diagnostics is unequivocal, a diagnostic arthroscopy is of outstanding value when a grading of the cartilage is crucial for a definitive decision regarding therapeutic options in patients with osteoarthritis.</p
- …