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Abstract

This paper presents extended techniques aiming at the improvement of automatic speech recognition (ASR) in
single-channel scenarios in the context of the REVERB (REverberant Voice Enhancement and Recognition Benchmark)
challenge. The focus is laid on the development and analysis of ASR front-end technologies covering speech
enhancement and feature extraction. Speech enhancement is performed using a joint noise reduction and
dereverberation system in the spectral domain based on estimates of the noise and late reverberation power spectral
densities (PSDs). To obtain reliable estimates of the PSDs—even in acoustic conditions with positive
direct-to-reverberation energy ratios (DRRs)—we adopt the statistical model of the room impulse response explicitly
incorporating DRRs, as well in combination with a novel proposed joint estimator for the reverberation time T60 and
the DRR. The feature extraction approach is inspired by processing strategies of the auditory system, where an
amplitude modulation filterbank is applied to extract the temporal modulation information. These techniques were
shown to improve the REVERB baseline in our previous work. Here, we investigate if similar improvements are
obtained when using a state-of-the-art ASR framework, and to what extent the results depend on the specific
architecture of the back-end. Apart from conventional Gaussian mixture model (GMM)-hidden Markov model (HMM)
back-ends, we consider subspace GMM (SGMM)-HMMs as well as deep neural networks in a hybrid system. The
speech enhancement algorithm is found to be helpful in almost all conditions, with the exception of deep learning
systems in matched training-test conditions. The auditory feature type improves the baseline for all system
architectures. The relative word error rate reduction achieved by combining our front-end techniques with current
back-ends is 52.7% on average with the REVERB evaluation test set compared to our original REVERB result.
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1 Introduction
Improving the performance of automatic speech recog-
nition (ASR) systems in reverberant environments is
still a major challenge in the signal enhancement and
machine learning communities [1, 2]. Strategies that
aim to alleviate the influence of the reverberation effect
range from dereverberation techniques in audio pro-
cessing [3–5] over robust feature extraction methods
[6] to reverberant signal modeling in ASR [7]. In
order to provide a common evaluation framework for
developing and testing of algorithms in the fields of
dereverberation as well as reverberation-robust ASR,
the REverberant Voice Enhancement and Recognition
Benchmark (REVERB) challenge [8] has been launched
and REVERB contributions showed significant improve-
ments for speech enhancement (cf., e.g., [9]) and ASR
(cf., e.g., [10, 11]).
Our previous contribution to the REVERB challenge

[12] proposed a combined system including speech
enhancement, robust feature extraction, acoustic model
adaptation, posterior decoding, and word hypothesis
fusion of multiple ASR systems for the REVERB single-
channel (1ch) ASR task. Compared to the REVERB chal-
lenge baseline results of the final evaluation test set, an
absolute improvement of average word error rate (WER)
of 12.43 % in the utterance-based batch processing mode
and of 9.42 % in the full batch processing mode were
achieved in [12]. For the single-channel scenario, the
submitted system in [12] showed the best performance
amongst all the submitted results which solely used the
ASR back-end system based on the hidden Markov model
toolkit (HTK) [13] that was provided as baseline sys-
tem by the REVERB challenge. It should of course be
noted, that by far better results were obtained with more
advanced ASR back-end technologies, e.g., feature trans-
formation/adaptation from the Kaldi toolkit [14] in [10],
or deep neural networks (DNNs) in [11]. In general, a
gap of 50 % relative difference w.r.t. WERs exists between
the results using the provided baseline ASR back-end
recognizer of the REVERB challenge and those using
more advanced back-end recognizers. For instance, we
achieved an average WER of 42.12 % in [12] with the
real recording data in the utterance-based batch pro-
cessing mode, while the best challenge result under this
processing mode was 20.30 % by [11]. Such a signifi-
cant boost also motivates the extensions of our work in
this contribution by combining our front-end technolo-
gies with state-of-the-art ASR back-end strategies such
as using DNNs to generate bottleneck (BN) features [15],
and subspace Gaussian mixture models (SGMMs) [16],
as well as DNN-based acoustic modeling [17]. Our pro-
posed front-end is composed of two components. One
is the speech enhancement system aiming at suppress-
ing the interference signal components, i.e., the noise and

late reverberation which significantly degrade ASR per-
formance [3, 18]. The other component is the extraction
of robust features [6] in adverse environments, which
are based on findings in the auditory processing of
mammals.
We pre-process the noisy and reverberant signal using

a single-channel speech enhancement scheme before the
recognition takes place. It has been shown that the side-
effects brought by speech enhancement such as musical
noise and speech distortions are also detrimental to ASR
systems [19, 20]. Therefore, a clean speech estimator is
required which keeps the speech distortions at a low
level and introduces a minimal amount of artifacts like
musical noise. The minimum mean square error (MMSE)
estimator of the clean speech amplitudes proposed in
[21] is a parametric estimator that can be tuned in such
a way that it gives a good compromise between musi-
cal noise, speech distortions, and speech enhancement.
For this, reliable estimates of the corresponding desired
speech and interference power spectral densities (PSDs)
are required. Here, for the considered reverberant sce-
narios with stationary noises present in the REVERB
challenge data, the minimum statistics (MS) approach
[22] is employed to estimate the noise PSD. However, the
temporal smearing caused by the reverberation leads to
more minima to be affected by the reverberant speech
energy. In order to be sure that the tracked minima
only belong to the noise energy, the MS search win-
dow length is increased for the proposed system. After
estimating the reverberant speech PSD and applying tem-
poral cepstrum smoothing (TCS) [23] which is capable
of reducing the effect of detrimental musical noise to
ASR [19], the late reverberation PSD is obtained from
the estimate of the reverberant speech PSD based on
the approach of [24]. However, Polack’s statistical model
of the room impulse response (RIR) used in [24] only
considers scenarios for which the speaker-microphone
distance is larger than the critical distance, i.e., the
direct-to-reverberation energy ratio (DRR) is smaller than
0 dB [25]. In order to also cover reverberant situations for
which the speaker-microphone distance is smaller than
the critical distance, i.e., for positive DRRs, the late rever-
beration PSD estimator by [26] is adopted that considers
the direct sound separately. In contrast to [24] where only
the reverberation time T60 is needed for Polack’s RIR
model, the method proposed by [26] additionally requires
an estimate of the DRR. Thus, a novel estimator is pro-
posed based on our previous work in [27, 28] using a
multi-layer perceptron (MLP) to jointly estimate T60 and
DRR. With these quantities, the enhanced speech PSD is
estimated and the time domain enhanced speech signal is
used for the feature extraction stage of the ASR systems.
Robust feature extraction in this work is achieved

based on auditory processing. It is obtained based on an
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amplitude modulation filterbank (AMFB) [6, 29], which
is inspired by the finding that the processing of ampli-
tude fluctuations plays an important role for speech
intelligibility. In [30], a periodotopic arrangement of neu-
rons tuned to certain modulation frequencies in the
inferior colliculus was observed to be almost orthog-
onal to the tonotopic arrangement of neurons tuned
to certain acoustic frequencies. It has also been shown
in [31] that the human auditory system decomposes
an audio signal not only into its acoustic frequencies
but also into its amplitude modulation frequency com-
ponents. As well, it is known that a wider temporal
context is essential for human understanding and auto-
matic speech recognition [29, 32, 33]. The AMFB features
are capable of capturing temporal dynamic information,
while the conventional mel-frequency cepstral coeffi-
cients (MFCCs) [34] only extract information from a
relatively limited temporal context. The AMFB features
have been shown to be effective in reverberant acoustical
environments earlier compared to MFCCs in [12], par-
ticularly under far-field conditions in larger reverberant
rooms.
The remainder of this paper is organized as follows:

Section 2 describes the speech enhancement algorithm.
The auditory modulation filterbank features, i.e., AMFB
features, as well as BN features are introduced in
Section 3. The acoustic models for ASR used in this
contribution are briefly described in Section 4. The exper-
imental procedure and results of the proposed system
are presented and analyzed in Section 5. Conclusions are
given in Section 6.

2 Speech enhancement (SE)
Single-channel speech enhancement (SE) is used to
dereverberate, as well as to de-noise the speech signal.
Here, the MMSE estimator described in [21] is used to
obtain the clean speech magnitude, which requires the
PSDs of the speech signal and the interference. It has
been shown, e.g., in [3, 18], that attenuating late rever-
beration is crucial for ASR while early reflections can be
mitigated well by, e.g., cepstral mean subtraction (CMS)
[35]. Hence, the interference signal is considered to con-
tain late reverberation and the noise, while the desired
speech signal is formed by the direct path and some early
reflections.

2.1 Structure of the SE algorithm
The recorded microphone signal y[ k] consists of the
reverberant speech signal x[ k] and the noise n[ k],

y[ k]= x[ k]+n[ k] , (1)

with k denoting the discrete time index. The reverberant
speech signal x[ k] can be modeled as the convolution of
the clean (anechoic) speech signal s[ k] and the RIR h[ k].

The reverberant signal x[ k] can be split into the clean
speech signal s[ k] and the residual reverberation xr[ k] as

x[ k]= s[ k] ∗h[ k]=
∞∑

k′=0
s[ k − k′] ·h[ k′]

= s[ k]+
∞∑

k′=1
s[ k − k′] ·h[ k′]

︸ ︷︷ ︸
=xr[k]

, (2)

where ∗ denotes the convolution. Furthermore, xr[ k] can
be decomposed into early reflections xe[ k] and late rever-
beration xl[ k] separated at sample Ke (usually up to about
50 ms of h[ k] [25], i.e.,Ke = ⌊

fs · 50ms
⌋
at a sampling

frequency fs) as

xr[ k]=
Ke∑
k′=1

s
[
k − k′] · h [

k′]
︸ ︷︷ ︸

=xe[k]

+
∞∑

k′=Ke+1
s
[
k − k′] · h [

k′]
︸ ︷︷ ︸

=xl[k]

.

(3)

With (2) and (3), (1) can be rewritten as,

y[ k]= s[ k]+xr[ k]+n[ k]= s[ k]+xe[ k]︸ ︷︷ ︸
=yd[k]

+ xl[ k]+n[ k]︸ ︷︷ ︸
=yi[k]

,

(4)

with yd[ k] being the desired signal part which contains
the direct-path signal s[ k] and early reflections xe[ k]. The
interference component yi[ k] consists of late reverbera-
tion xl[ k] and the noise n[ k]. Note that the noise n[ k]
considered here is mostly stationary and was recorded
under the same reverberation conditions as the RIR mea-
surement [8]. The goal is to find an estimate of the
desired speech component ŷd[ k] and, by this, to reduce
the interference yi[ k].
The proposed speech enhancement algorithm depicted

in Fig. 1 operates in the short-time Fourier trans-
form (STFT) domain. Uppercase variables, e.g., Y [m, �],
Xl[m, �], and Yd[m, �], denote the STFT representations
of y[ k], xl[ k], and yd[ k], respectively, with m and �

representing the frequency bin and the temporal frame
index. First, we need to estimate the background noise
(cf. Section 2.2, please note that no reverberation is
included in the noise PSD estimate) to obtain an esti-
mate of the reverberant speech from TCS (cf. Section 2.3).
This PSD λ̂X[m, �] is then used to obtain an estimate
of late reverberation based on the RIR model from
[26] (cf. Section 2.4), which allows for estimating the
clean speech PSD λ̂Yd [m, �] by applying TCS again.
Then, the MMSE estimator (cf. Section 2.5) is applied to
obtain an estimate of the clean speech signal Ŷd[m, �],
which is then transferred back to the time domain by
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Fig. 1 Overview of the speech enhancement (SE) algorithm to suppress the noise and late reverberation

inverse STFT (ISTFT) and subsequently forwarded to
the ASR system. Additionally, a joint (T60, DRR) esti-
mator using an MLP network (cf. Section 2.6) is pro-
posed as input for the late reverberation PSD estimate
λ̂Xl [m, �].

2.2 Noise PSD estimation
The noise PSD λN [m, �] is estimated using an adapted
version of the well-known MS method [22]. MS offers
accurate noise PSD estimation especially if the noise signal
is stationary to a certain extent, i.e., varies slowly com-
pared to the statistics of the desired speech component,
which is true for the noise contained in the REVERB chal-
lenge data set. It is assumed that the minima in this PSD
originate from time-frequency bins that do not contain
speech. These minima are tracked using a search window
spanning usually 1.5 s of the estimated input PSDs in [22].
However, to ensure that no reverberation (which intro-
duces the decay tail to the speech pauses) leaks into the
noise PSD estimate, we enlarged this search window to
3 s [36].

2.3 Speech PSD estimation
We employ temporal cepstrum smoothing (TCS) [23, 37]
for estimating the reverberant and the clean speech
PSDs. This approach smoothes the maximum likeli-
hood (ML) estimate of the clean or reverberant speech
PSD over time in the cepstral domain. Due to the com-
pact representation of speech in the cepstral domain,
speech-related and non-speech-related coefficients can
be selectively smoothed. Compared to other approaches,
e.g., the decision-directed approach [38], TCS is able to
reduce musical noise artifacts, which is crucial for ASR
systems [19].

First, the PSD of the reverberant speech
λX[m, �]= E

{|X[m, �]|2} (E{·} is the expectation
operator) is obtained by the ML estimate [38],

λ̂ml
X [m, �]=max

(
|Y [m, �] |2λ̂N [m, �] , ξmin · λ̂N [m, �]

)
, (5)

where ξmin is the lower bound of the a priori signal-to-
noise-ratio. Then, the cepstral representation of the above
ML estimate is calculated as

λ̂
c,ml
X [ q, �]= F−1

{
ln

(
λ̂ml
X [m, �]

)}
, (6)

where the superscript c denotes the cepstral domain and q
represents the cepstral or quefrency index.F−1{·} denotes
the inverse discrete Fourier transform (IDFT). After that,
smoothing is applied to (6), i.e.,

λ̂cX[ q, �]= αc[ q, �] ·λ̂cX[ q, �−1]+(1−αc[ q, �] )·λ̂c,ml
X [ q, �] ,

(7)

where αc[ q, �] represents a quefrency-dependent smooth-
ing coefficient, which should be chosen such that the coef-
ficients relevant for speech production are maintained
while the remaining coefficients are strongly smoothed
[23]. Thus, in an SE framework, usually αc[ q, �] is cho-
sen small for the speech spectral envelope represented
by the low quefrencies and the fundamental period
peak in the cepstrum [37]. In contrast to SE, preserving
the fundamental frequency is not crucial for ASR sys-
tems [39], and αc[ q, �], thus, is chosen as,

αc[ q, �]=
⎧⎨
⎩
0.0 for q = 0, . . . ,

⌈
fs · 0.5 ms

⌉ − 1 ,
0.5 for q = ⌈

fs · 0.5 ms
⌉
, . . . ,

⌈
fs · 1 ms

⌉ − 1 ,
0.9 for otherwise.

(8)
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Note that the application range of q is only given for
the lower half of the cepstrum, which will be applied
accordingly to the symmetric counterpart. Finally, the
reverberant speech PSD estimate λ̂X[m, �] is achieved
after transforming (7) back to the frequency domain,

λ̂X[m, �]= b · exp
(
F

{
λ̂cX[ q, �]

})
, (9)

where F{·} represents the DFT operator. The factor b
is a function of the smoothing factor αc[ q, �] in (8) and
compensates for the bias caused by the averaging in the
cepstral domain [23]. For a detailed discussion of b the
reader is referred to [23].

2.4 Late reverberation PSD estimation
In our workshop paper [12], Polack’s statistical RIR model
[3, 24] has been used to achieve reverberation suppres-
sion based on an estimate of the late reverberation PSD
λXl [m, �]= E

{|Xl[m, �] |2}. Please note, that for simplic-
ity, the frequency bin m will be omitted in the following
descriptions within Section 2, since the spectral bins are
assumed to be independent. By using the reverberant
speech PSD estimate λ̂X[ �] obtained from (9), as well as
the separation of the early and late part in (2)-(4), the late
reverberation PSD estimate can be calculated by [24]

λ̂Xl [ �]= exp(−2ρτsLe) · λ̂X [� − Le] , (10)

where the parameter Le is a number of frames which cor-
responds to the duration of early part of the RIR (cf. Ke in
samples in (3)). Consequently, Le ·τs is the start time of late
reverberation (which is fixed to 50 ms here), and τs is the
STFT time shift (hop size in s). ρ is the decay rate related
to the reverberation time T60, i.e., ρ = 3 ln(10)/T60. In
[12], blind reverberation timeT60 estimationwas achieved
by the method proposed in [40], which is based on spec-
tral decay distributions of the observed speech signal and
is shown to be robust against additive noise when a noise
PSD estimator is appended.
Considering reverberant situations where the speaker-

microphone distances are smaller than the critical dis-
tance, i.e., those with positive DRRs [25], the statistic
reverberation model proposed in [26] is used here which
separates the direct path from Polack’s RIR model as used
in [24], defined with the spectral variance λH [ �] of the RIR
h[ k] in the STFT domain as

λH [ �]=
{

βd for � = 0 ,
βr exp(−2ρτs�) for � ≥ 1 , (11)

where βd and βr denote the variances of the direct path
and the residual reverberation part, respectively. Accord-
ingly, the relationship to the DRR is given by [26]

DRR = 10 log10
(
1 − exp(−2ρτs)

exp(−2ρτs)
· βd

βr

)
. (12)

Using (11), the reverberant speech PSD can be com-
puted by [26]

λ̂Xr [ �] = (1 − κ) · exp(−2ρτs)λ̂Xr [ � − 1] (13)
+ κ · exp(−2ρτs)λ̂X[ � − 1] ,

where κ = βr/βd is calculated from the DRR in (12), con-
straint in the range of (0, 1]. Then, the late reverberation
PSD from (10) is modified to

λ̂Xl [ �]= exp(−2ρτs(Le − 1)) · λ̂Xr [ � − Le + 1] . (14)

If κ equals 1, then (14) is equivalent to (10), which shows
that this approach is the same as the approach described
in [24] under this condition. It has been shown in [41] that
(14) provides a more reliable late reverberation PSD esti-
mate so that less speech distortions are achieved, which
is a benefit for the ASR system. A disadvantage of this
method is that it requires not onlyT60 but also the DRR. In
other words, the reliable estimation of these two param-
eters plays a crucial role for the late reverberation PSD
estimate, which here can be obtained by anMLP estimator
described in Section 2.6.

2.5 MMSE estimator
After estimating the noise and late reverberation PSDs,
the interference PSD can be obtained from (4) in a
straightforward way as

λ̂Yi [ �]= λ̂Xl [ �]+λ̂N [ �] , (15)

assuming that the late reverberant signal xl[ k] and the
noise n[ k] are uncorrelated. λ̂Yi [ �] will be used to esti-
mate the PSD of the desired speech component Yd[ �] by
another TCS procedure as depicted in the lower branch of
Fig. 1. To achieve this, as aforementioned in Section 2.3,
the input noise PSD λ̂N [ �] in (5)-(9) is replaced by λ̂Yi [ �].
As we now use the PSD of the interference signal λ̂Yi [ �],
i.e., the noise and late reverberation, TCS will estimate
the PSD of the clean speech signal and early reflections
λ̂Yd [ �].
In the final step, a parameterized MMSE spectral mag-

nitude estimator [21] is used to determine the weighting
functionG[ �] to obtain the enhanced speech signal Ŷd[ �].
A simplified, computationally less complex version [42]
based on the confluent hypergeometric function [43] is
used, which is defined as

G[ �] =
(

1
1 + ν[ �]

)p0
· G0[ �] (16)

+
(

ν[ �]
1 + ν[ �]

)p∞
· ξ̂ [ �]
μ + ξ̂ [ �]

G0[ �] =
(

�(μ + γ /2)
�(μ)

)1/γ
·
(

ξ̂ [ �]
μ + ξ̂ [ �]

· 1
ζ̂ [ �]

)1/2

,(17)

ν[ �] = ξ̂ [ �]
μ + ξ̂ [ �]

· ζ̂ [ �] , (18)
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with �(·) being the complete gamma function. The esti-
mates of the a priori and a posteriori desired-signal-to-
interference-ratios are defined as ξ̂ [ �]= λ̂Yd [ �] /λ̂Yi [ �],
and ζ̂ [ �]= |Y [ �] |2/λ̂Yi [ �], respectively. The constant
parameters μ and γ can be tuned to yield several types
of estimators. In [21], μ = 0.5 and γ = 0.5 have been
identified as a good compromise between the amount of
musical noise and the clarity of speech and are, therefore,
also applied here. For obtaining the correct approxima-
tion for the selected values of μ and γ , the exponents p0
and p∞ in (16) have to be set to 0.5 and 1.0, respectively
[42]. Subsequently, the estimated desired signal Ŷd[ �] is
calculated by

Ŷd[ �]= max(G[ �] ,Gmin) · Y [ �] , (19)

with Gmin being a lower bound for the weighting func-
tion G[ �] which alleviates speech distortions, however,
also limits the possible amount of interference suppres-
sion. In conformance with [44], Gmin = −10 dB is chosen
as a good value to improve the ASR performance in rever-
berant environments. Then, as illustrated in Fig. 1, an
ISTFT is conducted to reconstruct the output speech sig-
nal in the time domain ŷd[ k] used for the subsequent ASR
experiments.

2.6 Estimation of room parameters (T60,DRR)

A novel approach to jointly estimate T60 and DRR is
proposed here based on our previous work [27, 28].
An overview of the estimation process is presented in
Fig. 2: In a first step, reverberant signals are converted to
spectro-temporal Gabor filterbank (GBFB) features [33,
45, 46] to capture information relevant for room param-
eter estimation. For details on GBFB selection, the reader
is referred to [27]. A multi-layer perceptron (MLP) classi-
fier, belonging to the class of feedforward artificial neural
network models [47], is trained to map the input pattern
to pairs of (T60, DRR) values. Since the MLP generates
one estimate per time step, we obtain an utterance-based
estimate by simple temporal averaging and subsequent
selection of the output neuron with the highest aver-
age activation (winner-takes-all approach). The MLP was
implemented with the freely available QuickNet package
[48] and has three layers. The output layer corresponds to
the (T60, DRR) pairs.

Fig. 2 Overview of the MLP setup for (T60, DRR) estimation

These pairs were defined based on the RIRs provided
by the training data of the REVERB challenge. Figure 3
shows the distribution of (T60, DRR) values for the given
RIRs. The bounding boxes in the figure denote the cate-
gorical boundaries for the classes.We defined 28 classes as
a compromise between a large number of classes (with the
potential of more accurate (T60, DRR) classification, but
only few training examples for each class) and few classes
(with coarse classification, but many training examples).
The T60 values are obtained using Schroeder’s method

[49], which formulates a poly-fit in the range between−35
to −5 dB of the RIR accumulation energy. The DRR in dB
is calculated as

DRR = 10 log10

∑Kd
k=0 |h[ k] |2∑∞

k=Kd+1 |h[ k] |2 , (20)

where Kd represents the sample length of the direct
sound arrival, which is usually measured as a short time
period after the onset of the RIR. Here we take the
maximum value of h[ k] as the onset of the RIR, and
the following 0.5 ms range as the direct path samples,
i.e., Kd = ⌊

fs · 0.5 ms
⌋
.

3 Auditory modulation filterbank features
Baseline features of the REVERB challenge are MFCCs
[34] plus delta (D) and double-delta (DD) coefficients
combined with CMS. To improve robustness towards
channel mismatch and quasi-stationary interference, we
apply mean variance normalization (MVN) [35] instead
of CMS to MFCC-D-DD and other feature types. This

Fig. 3 Distribution of (T60, DRR) values for the RIRs provided by the
REVERB challenge (for ASR multi-condition training). Each dot
represents one single-channel RIR with its (T60, DRR). Twenty-eight
classes are defined based on this distribution (labels 0 to 27 inside the
class boundary boxes)
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section introduces auditory modulation filterbank fea-
tures which are based on an amplitude modulation fil-
terbank (AMFB), as well as the bottleneck (BN) features
concept which can be derived from different feature types.

3.1 Amplitude modulation filterbank (AMFB) features
The AMFB is employed for ASR feature extraction that
analyzes temporal dynamics of a short-term spectro-
temporal representation [6]. Please note that the AMFB
employed in this study is based on an implementation pro-
posed in [29] but without adjusting the distance between
modulation filters.

am[ q] = scarr[ q] ·henv [ q] , (21)
scarr[ q] = exp (iω(q − q0)) , (22)

henv[ q] = 0.5 − 0.5 · cos
(
2π(q − q0)
Wq + 1

)
. (23)

The amplitude modulation filters am are complex expo-
nential functions that are modulated by a Hann-envelope,
as described in (21) by the Hadamard product of scarr
(cf. (22)) and henv (cf. (23)), in which i is the imaginary
unit andWq is the Hann-envelope window length with the
center index q0 in the cepstral domain. Note that beyond
the length Wq, the coefficients of Hann-envelope are set
to zero in (23) as illustrated in the upper panel of Fig. 4.
The periodicity of the sinusoidal-carrier function is

defined by the radian frequency ω. By varying ω and
Wq, the AMFB can be tuned to cover different temporal
amplitude modulation frequencies with different band-
widths. For the AMFB feature extraction, five amplitude
modulation filters are selected, whose center frequen-
cies and bandwidth settings are chosen according to the

Fig. 4 The time domain filter coefficients (upper panel) and frequency
domain normalized gain functions (lower panel) of the AMFB filters
with real and imaginary parts; center temporal modulation
frequencies are 0, 5, 10, 16.67, and 27.78 Hz

psycho-physically motivated amplitude modulation filter-
bank proposed in [32], which has a constant bandwidth of
5 Hz for amplitude modulation frequencies up to 10 Hz
and a constant-Q relationship with value of 2 for higher
modulation frequencies.
Figure 4 shows the AMFB coefficients in the time

domain as well as their corresponding normalized gain
functions in the frequency domain. Center modulation
frequencies of the chosen five amplitude modulation
filters are located at 0, 5, 10, 16.67, and 27.78 Hz,
respectively, i.e., cover a much wider modulation fre-
quency range compared to D and DD features that are
located around 10 Hz.

3.2 Bottleneck (BN) features
BN features have been shown to be effective in improving
the ASR performance [15, 50]. They are usually generated
from a 4- or 5-layer MLP or DNN, in which one of the
internal hidden layers has a small number of units com-
pared to the sizes of other hidden layers or the output
layer. As a result, such a small layer creates a constric-
tion inside the network that forces the relative information
into a low dimensional representation. Usually, the inputs
to the hidden units of the BN layer will be used as fea-
tures for the conventional HMM-based speech recognizer.
Such BN features represent a nonlinear transformation of
the original input features and represent the underlying
speech quite well after the DNN is trained to show a good
classification accuracy.
Another advantage of BN features is the dimension

reduction functionality. For practical reasons, it is not
feasible to pass very high dimensional features to conven-
tional GMM-HMM systems. Other dimensionality reduc-
tion techniques such as principal component analysis or
linear discriminant analysis (LDA) have to face the prob-
lem that the feature information in highly dimensional
vectors might not be separable linearly. BN processing
is particularly useful for our auditory modulation filter-
bank features which are characterized by more than 100
dimensions.

4 Advanced acoustic modeling
Stochastic processing with HMMs predominated acous-
tic modeling for ASR for nearly four decades [51], trained
from data by, e.g., using the expectation maximization
algorithm and incorporating GMMs [52] that efficiently
represent the relationship between HMM states and the
acoustic input. More recent approaches like SGMM [16]
or DNN systems [17], however, lead to higher recognition
performance especially in acoustically adverse conditions.

4.1 Subspace Gaussian mixture models (SGMMs)
The conventional GMM-HMM framework requires train-
ing of separate GMMs in each HMM state. SGMMs [16]
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allow HMM states to share a common structure, in which
themeans andmixture weights can vary within a subspace
of the full parameter space. A global mapping from a vec-
tor space to the space of the GMM parameters is used,
and the shared GMM is usually referred to as a univer-
sal background model (UBM). It has been shown [16] that
SGMMs behave more compact and perform better than
the conventional GMMs approach, as well, without the
loss of compatibility to most standard techniques such as
feature-space adaptation using maximum likelihood lin-
ear regression (fMLLR) [53], discriminative training like
boosted maximum mutual information (bMMI) [54], or
the minimum Bayes risk (MBR) approach [55].

4.2 Deep neural networks (DNNs)
DNNs have gained much attention during the last years
because of the achieved dramatic improvements in acous-
tic modeling, especially with the recent breakthrough
regarding a proper training of DNNs [17], which initial-
izes the DNN weights to a suitable starting point rather
than using a random initialization. This allows for using
back-propagation training [56] and by this, a convergence
to a better local optimum. The DNN-HMM approach has
proven to be more effective in large vocabulary speech
recognition tasks compared to the conventional GMM
computation in HMMs (cf., e.g., [17, 57]), in which a
DNN was trained to predict context-dependent posterior
probabilities for the HMM states. Furthermore, the deep
structure of DNNs allows for a more efficient represen-
tation of many nonlinear transformations due to many
layers of simple nonlinear processing. This allows DNNs
to learn more invariant and discriminative features [58].
Usually, such invariance improves the ASR robustness
against the mismatch between the training and test
data.

5 Experiments and results
Experiments and results shown in the following are all
carried out according to the instructions of the REVERB
challenge [8].

5.1 Database
The database provided by the REVERB challenge consists
of simulated data (SimData) and real recordings (Real-
Data) for different room sizes and speaker-microphone
distances. Based on the WSJCAM0 corpus [59], Sim-
Data is artificially generated by convolving clean WSJ-
CAM0 signals with measured RIRs, as well as by adding
additional measured noises with a desired-signal-to-
noise-ratio (DSNR) of approx. 20 dB. Six different acous-
tic conditions are simulated in the SimData, considering
3 different room sizes (Room1, 2, 3) with 2 differ-
ent speaker-microphone distances (Near, Far). Further-
more, utterances from the MC-WSJ-AV corpus [60] were

recorded in a room (Room1) with 2 different speaker-
microphone distances (Near, Far) to generate the dataset
RealData. The sampling frequency of the REVERB chal-
lenge data is 16 kHz.
To evaluate the ASR performance, a training set, a devel-

opment test set (Dev.) and a final evaluation test set (Eval.)
are provided. The SimData set consists of 1484 utter-
ances from 10 speakers for Dev. and 2176 utterances from
28 speakers for Eval., respectively. The RealData set con-
sists of 179 utterances from 5 speakers for Dev. and 372
utterances from 10 speakers for Eval., respectively. For
a multi-condition training set with 7861 anechoic utter-
ances from 92 speakers, 24 RIRs (cf. Fig. 3) and several
types of stationary noise signals were recorded according
to the 6 reverberant conditions mentioned above. Unlike
for our workshop paper [12] that covered the 1ch ASR
task in both the full batch processing and the utterance-
based batch processing mode, here we focus on the 1ch
scenarios only in the utterance-based batch processing
mode for which each utterance is processed separately,
since this provides the maximum potential for real-time
applications.

5.2 ASR framework
The baseline ASR back-end recipe provided by the
REVERB challenge is based on the HTK [13], withMFCC-
D-DD features (dimension of 39) using CMS. For this
paper, we use the open-source Kaldi ASR toolkit [14] to
test various back-end technologies in combination with
our front-end proposals. The text prompts of the utter-
ances are based on the WSJ 5K corpus [61], and a bigram
language model (LM) is generated. In order to further
improve the LM accuracy, the standard 5K trigram LM
is employed here. Multi-condition training is employed
and WERs are used to assess the ASR performance. The
average WERs of SimData and RealData are calculated as∑

set(WER · Nutt)/
∑

Nutt, where WER represents WER of
each test set with the corresponding amount of test utter-
ances Nutt. The log-mel-spectrogram is calculated with
frame length of 25 ms and frame shift of 10 ms.

5.3 ASR performance with speech enhancement
The proposed SE algorithm in Fig. 1 is applied to both,
the multi-condition training set and the test sets. The
parameter settings for the proposed algorithm described
in Section 2 are summarized in Table 1.

5.3.1 Performance of (T60,DRR) Estimation
As aforementioned in Section 2.6, 28 classes of the param-
eter pair (T60, DRR) (cf. Fig. 3) which is needed as input
for the SE algorithm have been defined based on the
provided RIRs for training, which we assume, cover the
necessary (T60, DRR) parameter pairs of the testing set.
The corresponding noises with DSNR of 20 dB for training
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Table 1 Parameter settings for the speech enhancement (SE) algorithm described in Section 2

fs STFT block ξmin (5) τs (10) Le (10) (μ, γ , p0, p∞) (16)-(18) Gmin (19) Kd (20)

16 kHz 32 ms −30 dB 16 ms 3 (0.5,0.5,0.5,1.0) −10 dB 80

are added as shown in Fig. 2. The number of neurons in
the input layer is 600, i.e. the dimension of the GBFB fea-
tures [28]. The temporal context considered by theMLP is
limited to 1 frame (i.e., no splicing is applied). The number
of hidden units is 2048, while the number of output units
is the amount of (T60, DRR) classes to estimate.
As depicted in Fig. 5, the true values (blue/dark dots)

of (T60, DRR) are calculated according to the provided
RIRs for SimData, which have been published after the
REVERB challenge workshop and are only used here for
analysis. For each utterance from the REVERB challenge
Dev., one point for T60 is shown in the upper panel of
Fig. 5 and the corresponding point for DRR in the lower
panel, i.e., 1484 points for SimData and 179 for RealData.
The true (T60, DRR) pairs for RealData are not known
(cf. missing blue/dark points in the right part of Fig. 5).
The estimated (T60, DRR) pair which is mapped from
the output of the proposed MLP estimator (cf. Fig. 3) is
shown in Fig. 5 by the green/light dots. In general, the pro-
vided RIRs for MLP training cover the (T60, DRR) range
of the test sets, except for one test set from ‘Room2Far’
of SimData, which consists of some RIRs with very
low DRRs. As it can be seen in Fig. 5, most estimated
(T60, DRR) are close to the true values, although some
deviations between blue/dark and green/light points can
also be observed. Due to a too small amount of RIRs for
training, ‘Room2Far’ of SimData shows larger deviations.
Nevertheless, it seems that such deviation will influence

the estimation of the corresponding reverberation effect
less that it could be expected from Fig. 5. Regarding the
estimated T60, mostly overestimation can be observed,
but at the same time, a trend of overestimation regarding
DRRs occurs, which indicates that the reverberation effect
with higher T60 and DRR at the same time behaves similar
as with lower T60 and DRR. On the one hand, for higher
T60, more reverberation effect is perceived, but on the
other hand, the higher the DRR is, the less the reverber-
ation effect is. Such a phenomenon can be also observed
in ‘Rooms3Near’, since the training RIRs with T60 around
700 ms and DRRs around 6 and 8 dB are quite rare as plot-
ted in Fig. 3 (with labels 17 and 18), so that theMLPmodel
for these sets may not be trained sufficiently.
Accordingly, most of the RealData utterances show

higher T60 estimated (at 800 or 1000 ms), compared to the
true values of approx. 700 ms [60] (given by the REVERB
challenge). This might be explained by the fact that Real-
Data shows larger mismatch with the multi-condition
training data w.r.t. different noise types with lower (than
20 dB) DSNR, which may affect the MLP model as if
more reverberation effect exists. Therefore, (T60, DRR)

estimates of RealData show higher T60 and lower DRRs,
even for the ‘Near’ test set.

5.3.2 Performance of ASRwith GMM-HMMs
Instead of applying D-DD to the MFCC features, an alter-
native feature post-processing from the literature [62]

Fig. 5 Performance of the (T60, DRR) estimator (cf. Section 2.6) for Dev. The true (T60, DRR) of SimData are depicted for comparison. The acoustic
conditions (room sizes and speaker-microphone distances) are according to Section 5.1
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is used, for which the context frames are spliced and
subsequently transformed via LDA and maximum likeli-
hood linear transform (MLLT), which was shown to be
more effective than MFCC-D-DD for feature extraction
in reverberant conditions (average 5 % absolute WERs
reduction) [10]. This also indicates that temporal dynamic
information extracted by such spliced short-term spec-
tral features is useful to improve the ASR performance in
reverberant environments. Here, 9 consecutive frames (4
for left and 4 for right, i.e., L = R = 4) of 13 MFCCs
were used, and the feature vector is projected to a 40-
dimensional subspace, which were the optimal parameters
found in [63].
Note that (T60, DRR) are known for the multi-condition

training data and the estimated (T60, DRR) values from
Section 5.3.1 are used for the test sets. For comparison,
the previous SE algorithm used in [12] with only T60 esti-
mate [40], and the proposed SE system but with true
(T60, DRR) (only for SimData) are processed using the
same Kaldi-based ASR framework.
It can be observed from Fig. 6 that based on knowl-

edge of T60 only, the proposed dereverberation algorithm
(cf. (10)) does not increase the recognition performance
in some reverberant scenarios by comparing the red line
(with cross markers) to the blue line (with circular mark-
ers), e.g., ‘Near’ test sets of SimData whose DRRs are
larger than 0 dB, as shown in Fig. 5. This phenomenon
has also been noticed in our workshop paper [12] using
HTK-based ASR framework. If DRRs are used together
with T60 (cf. (13)-(14)) as shown by the green line (with
square markers), all the test sets for all reverberant con-
ditions benefit from the proposed SE algorithm. It just
performs slightly worse than the ideal case for which the
true (T60, DRR) are given for SimData (yellow line with
diamond markers), showing that the proposed (T60, DRR)

estimation via MLP is capable of providing sufficiently
correct T60 and DRR information to the SE algorithm.
In average, 2–3 % absolute WER improvement can be
obtained by the proposed SE algorithm using the pro-
posed (T60, DRR) estimator.

5.4 ASR performance of auditory modulation filterbank
features

AMFB features are calculated based on the log-mel-
spectrogram with 31 dimensions and a subsequent dis-
crete cosine transform along the spectral axis, i.e., the
cepstrogram. The AMFB in (21) (as also depicted in
Fig. 4 including both real and imaginary parts) is applied
to/convoluted with the cepstrogram (cut with the first
13 coefficients from 31 dimension, which is same as
13 MFCCs). Thus, the final AMFB feature dimension is
13 × 9 = 117.

5.4.1 Performance with GMM-HMMs
As it can be seen in Fig. 7, AMFB features outper-
form the MFCC-LDA-MLLT features by approx. 1 % in
average. Even though MFCCs with splicing and LDA-
MLLT extract temporal information (with L = R = 4) and
already achieve better performance than D-DD, AMFB
features are shown to be more effective to achieve
this aim by the dedicated temporal modulation filter-
bank design. This analysis also indicates that the broad
temporal dynamics are crucial for feature extraction in
reverberant environments in order to capture more valu-
able information which may behave robust against the
reverberation effect. Moreover, Fig. 7 shows that fur-
ther WER improvements of approx. 1.5–2 % can be
obtained for AMFB features when the proposed SE algo-
rithm is applied. This also indicates that the proposed
SE algorithm is able to provide consistent benefits for
both types of feature extraction for ASR systems with
GMM-HMMs.

5.4.2 Performance with SGMM-HMMs
As aforementioned in Section 4.1, the SGMM approach
uses a large UBM to cover the acoustic space and maps
this space to a more specific subspace for each HMM
state. Here, the amount of the Gaussians that are used
for UBM training is computed as 10 times the input fea-
ture dimension, and 8000 total clustered phonetic states
(sub-states) are defined for SGMM training. As shown

Fig. 6 ASR performance of the proposed SE algorithm for Dev. MFCC-LDA-MLLT features with MVN, a trigram LM and GMM-HMM are used for
evaluation
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Fig. 7 ASR performance of AMFB features with GMM-HMM for Dev. The SE algorithm (dashed lines), MVN, and a trigram LM are used for evaluation.
MFCC-LDA-MLLT features are employed as baseline for comparison

in Fig. 8, in general, SGMM-HMM outperforms HMM-
GMM by 3–4 % in average for both feature types, i.e., for
MFCC-LDA-MLLT as well as AMFB. Similar to the
results with GMM-HMMs in Fig. 7, the SE algorithm
provides 1–2 % absolute WER improvements also for
SGMM-HMM.
It should be mentioned that training of SGMM is sub-

stantially more complex than the conventional GMM sys-
tem [16], particularly when the input features have high
dimensions as, e.g., AMFB features with dimension of
117. In general, the complexity of the calculations related
to the covariance matrix estimation necessary for train-
ing of SGMM are quadratic w.r.t. the feature dimension.
In many situations, less complexity might be preferable
as long as the performance degrades not substantially.
Hence, SGMM-HMM systems would become more effi-
cient in combination with AMFB features when the fea-
ture dimensions can be reduced.

5.5 ASR performance of BN features
In order to explore the advantages of auditory modu-
lation, filterbank features with high dimension, without
loss of the compatibility to, e.g., SGMM and fMLLR
w.r.t. complexity and parameter fine-tuning, BN features
can be used. The DNN to generate BN features (denoted
as BN{·} in the following) usually takes conventional

features with long temporal context [64]. Since AMFB
features already explore the temporal information, fur-
ther context extension is omitted here, i.e., no splicing is
applied, to generate BN{AMFB}. For comparison, MFCCs
with context extension to 9 frames, i.e., L = R = 4, result-
ing in a dimension of 13 × 9 = 117, are used according
to the LDA-MLLT features in the aforementioned GMM-
HMM ASR performance. Five hidden layers (each with
1024 units) for the DNN are used and the middle layer
is defined as the BN layer with 42 units [50]. The DNN
training is carried out using stochastic mini-batch gra-
dient descend with a mini-batch size of 512 samples. A
learning rate of 0.005 for all layers during pre-training and
a final stop learning rate of 0.0005 are used. DNN training
was performed on a NVIDIA Tesla K20C GPU.
It can be observed from Fig. 9 that WERs increase by

an average of 1–2 % when LDA-MLLT is used to reduce
the feature dimension for AMFB features. This might be
explained by the fact that AMFB features are dedicated
and designed and it may be difficult to separate the high
dimension information just via a linear transform. Use-
ful feature information might be lost after such feature
dimension reduction, which therefore degrades the ASR
performance. In contrast, BN processing is capable of
further improving the ASR performances for both fea-
ture types, meanwhile, reducing the feature dimension

Fig. 8 ASR performance of AMFB features with SGMM-HMM for Dev. The SE algorithm, MVN, and a trigram LM are used for evaluation. The thick bars
represent the average WERs for SimData and the thin bars for RealData. The average results with GMM-HMM in Fig. 7 are illustrated here for
comparison
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Fig. 9 ASR performance of BN features for Dev. MFCC(L = R = 4) and AMFB features are used as the input to generate BN {MFCC} and BN {AMFB},
respectively. For comparison, LDA-MLLT is also applied to MFCC(L = R = 4) and AMFB features to reduce their dimensions to 40. GMM- and
SGMM-HMMs are used for evaluation. The SE algorithm is employed to SGMM-HMM afterwards. Solid lines are for SimData, and dashed lines for
RealData

particularly for AMFB features. In general, WER reduc-
tion of 4–5 % absolute can be achieved by BN processing
with GMM-HMMs.
Furthermore, the SGMM approach provides an aver-

age of nearly 3 % absolute WER improvement when
replacing GMMs. AMFB features still outperform even
spliced MFCCs. Moreover, ASR performance is further
improved by 2.5–3 % absolute when BN processing is
applied to AMFB features (cf. results in Fig. 8). However,
the improvements obtained with the SE algorithm and
BN features are rather small, particularly for SimData. It
seems that our SE algorithm reduces the data variations
during the multi-condition training, which instead, DNNs
during BN processing usually prefer [58].

5.6 ASR performance with DNN-HMMs
The DNN uses an acoustic model implemented in Kaldi
[65]. The training procedure consists of three phases:
during the pre-training stage, a seven-layer deep belief
network (DBN) with 2048 neurons for the hidden layers is
trained as the stack of the restricted Boltzmann machines
using a contrastive divergence algorithm. Since DNNs
cannot align context-dependent states to time frames of
the training data, an auxiliary GMM triphone system is
trained with the ML criterion to provide alignments for
the DNN training. Subsequently, the DBN is fine-tuned
to classify feature vectors into triphone states using back-
propagation via a stochastic gradient descent algorithm
[56]. Context-dependent HMM states are replaced by the
posterior probabilities, i.e., the softmax output layer of the
seven-layer DNN. A validation set is required for train-
ing, hence we randomly selected 5 % of the whole training
data, i.e., �7861 × 0.05� = 393, for the validation, and the
rest for the training.

5.6.1 Performance of FBANK features as DNN input
As an additional baseline feature, log-mel filter-
bank (FBANK) coefficients with 40 dimensions are
used as DNN input. Additional splicing over 11 frames
(L = R = 5) is performed for FBANK (and MFCC)

features to capture temporal dynamics on feature level.
The choice of 11 frames is based on the baseline feature
input for the DNN-HMM reported in [17, 57, 58]. Note
that splicing is not performed for AMFB features since
they already capture temporal information inherently.
As listed in Table 2, AMFB features still perform

better than MFCC with context extension for DNN-
HMMs, which is consistent with the results obtained with
(S)GMM-HMMs. However, FBANK features provide a
further 2–3 % WER improvement compared to conven-
tional MFCCs. Apparently, DNNs are capable of making
good use of the more detailed information captured by
the FBANK features [57], compared to the conventional
MFCCs that eliminate spectral fine structure with the
aim of obtaining a compact input representation with 13
parameters per time frame. Furthermore, it also shows
that FBANK features perform even better than AMFB fea-
tures, which indicates that the original AMFB features
might not be preferable to DNNs, like the conventional
MFCCs.

5.6.2 Auditorymodulation filterbank features for DNNs
As the results from the previous section show, the dif-
ferent properties of a DNN-based architecture compared
to classic approaches result in different baseline features.
DNNs do not require decorrelated or highly condensed
feature input (e.g., MFCCs), but profit from additional
information contained in simple log-mel spectrograms.
Based on this observation, we modified the AMFB fea-
tures: AMFB-FBANK features are calculated by applying
the temporal modulation filtering directly to the log-mel-
spectrogram (in contrast to previous processing that was
based on the cepstrogram in Section 5.4), and thus, the
final AMFB-FBANK feature dimension is 40 × 9 = 360.
As shown in Table 2, WERs are reduced by an average

1.5 % absolute with our modified filter sets, i.e., AMFB-
FBANK, compared to the previous processing AMFB
features. It can be also seen that AMFB-FBANK features
even outperform FBANK features by an average 1%̇, which
indicates that the AMFB design for temporal dynamics
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Table 2 ASR WERs (%) of various types of features as DNN input with DNN-HMM for Dev

Dev. 1ch ASR task SimData RealData
Utterance-based batch processingmode Room1 Room2 Room3 Avg. Room1 Avg.
with multi-condition training Near Far Near Far Near Far Near Far

DNN-HMM MFCC(L=R=5,#143) 6.61 8.82 8.31 17.03 9.97 20.03 11.79 28.70 28.91 28.80
AMFB(#117) 6.22 7.74 7.49 14.52 9.79 16.64 10.39 25.39 27.00 26.19
FBANK(L=R=5,#440) 5.80 6.91 7.17 13.90 8.28 15.01 9.50 26.08 25.91 25.99
FBANK(L=R=5,#440)+SE 5.83 7.23 7.44 14.84 8.68 14.89 9.81 25.60 25.76 25.67
AMFB-FBANK(#360) 5.19 6.32 7.69 12.50 7.72 13.95 8.89 22.27 26.66 24.45
AMFB-FBANK(#360)+SE 5.70 6.86 7.44 12.10 7.79 13.33 8.86 22.14 25.56 23.84

extraction is superior to the context extension by splic-
ing for DNN usage. In addition, when the SE algorithm
is applied in the DNN-HMM scenario, it seems that its
advantage is not obvious as applied for (S)GMM-HMMs,
particularly for SimData. This is also consistent with the
results for BN processing (cf. Section 5.5). It might be
explained by the fact that DNNs perform robust to quite
small variations, and sometimes it may hinder the gen-
eralization when removing too much variability from the
data [58], e.g., by our proposed SE algorithm used for
pre-processing of the data. However, for RealData, SE
algorithm leads to slightly better results, which might be
due to the more evident mismatch between RealData and
the training data, for which the SE algorithm alleviates
such mismatch.

5.6.3 Performance of the splicing effect
Since DNNs are powerful in transforming features
through many layers of nonlinear transformations, it is
common to splice the input features with a long con-
text window to learn the temporal dynamic information
automatically.
Figure 10 shows that the benefit from splicing FBANK

features (without other temporal dynamics) is propor-
tional to the splicing window length, i.e., longer temporal
analysis windows should be preferred in DNN architec-
tures, at least in reverberant conditions. However, longer
and longer splicing windows would also increase the risk
that the stochastic gradient descent algorithm for training

might fail to find a better local optimum [66], so that the
ASR performance might decrease instead. On the other
hand, it seems that longer splicing windows do not help
AMFB-FBANK features in general. Figure 10 shows that a
splicing window of 3, i.e., L = R = 1, is a good choice for
AMFB-FBANK features which already extract temporal
dynamics internally. In this case, longer splicing windows
(higher dimension) might affect the training algorithm
to find a better local optimum, for which the parameter
tuning is probably required to further improve the DNN
performance.

5.7 ASR performance for the REVERB challenge
It has been shown that our proposed front-end tech-
nologies are capable of improving the ASR performance
in reverberant environments with the REVERB challenge
Dev.; at the same time, they were shown to be benefi-
cial in state-of-the-art ASR back-end approaches. Good
results were obtained when combining the SE algorithm
with auditory modulation features and BN processing for
SGMM-HMM, as well as the modified auditory modula-
tion features for DNN-HMM. The results for the REVERB
challenge with Eval. are summarized in Table 3. For BN
features with SGMM-HMM, discriminative training with
bMMI (boosted factor of 0.1 and 4 iterations [54]) and
adaption with fMLLR [53] are further employed. For the
DNN-HMM system, an additional discriminative training
can be performed based on the fine-tuned DNN-HMM

Fig. 10 ASR performance of splicing effect with DNN-HMM for Dev. FBANK and AMFB-FBANK features are used for evaluation. Splicing windows are
chosen as 0, 3, 5, 7, 9, and 11 with equal lengths for the left and right extension
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Table 3 ASR WERs (%) of our proposed front-end technologies with state-of-the-art back-end strategies for Eval., which can be compared to the original REVERB challenge results.
An extended training data (ext.) can be additionally applied to DNN-HMM

REVERB challenge Eval. 1ch ASR task SimData RealData

Utterance-based batch processingmode Room1 Room2 Room3 Avg. Room1 Avg.

with multi-condition training Near Far Near Far Near Far Near Far

Results from challenge REVERB baseline 20.84 21.72 23.43 38.59 28.43 44.79 29.62 59.09 55.81 57.45

Our submitted results from [12] 13.64 14.93 16.11 25.65 19.77 30.51 20.09 41.97 42.27 42.12

Results from [11] 5.90 6.60 7.90 12.20 8.70 13.20 9.10 32.60 32.30 32.50

Results from [11] (ext.) 5.10 5.60 6.70 11.50 7.60 11.60 8.00 27.10 27.90 27.50

This study SGMM BN{MFCC(L=R=4,#117)}(#42) 6.52 7.30 8.31 13.41 9.86 16.85 10.37 25.07 24.48 24.77

BN{MFCC(L=R=4,#117)}(#42)+SE 6.20 7.52 8.70 14.37 9.72 17.14 10.60 24.75 24.10 24.42

BN{AMFB(#117)}(#42) 5.78 6.61 8.37 12.60 9.25 14.48 9.51 24.50 24.21 24.35

BN{AMFB(#117)}(#42)+SE 6.34 7.32 9.08 13.40 9.67 14.94 10.12 24.38 23.90 24.14

DNN FBANK(L=R=5,#440) 5.66 7.47 8.44 14.11 9.84 17.20 10.45 28.53 28.46 28.49

FBANK(L=R=5,#440)+sMBR 5.86 6.91 7.17 11.51 8.70 14.48 9.10 23.22 24.61 23.91

FBANK(L=R=5,#440)+sMBR+SE 6.32 6.90 7.83 12.46 8.53 14.51 9.42 22.69 24.47 23.58

AMFB-FBANK(L=R=1,#1080) 5.54 6.22 7.57 11.33 8.17 12.98 8.63 24.15 27.99 26.07

AMFB-FBANK(L=R=1,#1080)+sMBR 5.71 6.39 7.17 10.53 7.36 11.82 8.16 22.68 23.43 23.05

AMFB-FBANK(L=R=1,#1080)+sMBR+SE 5.86 6.42 7.22 10.71 7.40 11.94 8.25 21.93 23.16 22.71

DNN+(ext.) FBANK(L=R=5,#440) 4.90 6.23 6.49 12.88 8.09 16.02 9.09 26.38 26.43 26.40

FBANK(L=R=5,#440)+SE(test) 5.22 6.39 7.06 11.65 7.51 13.34 8.52 24.08 25.42 24.75

FBANK(L=R=5,#440)+sMBR 4.76 6.00 5.85 11.40 7.61 13.97 8.26 25.36 24.85 25.10

FBANK(L=R=5,#440)+sMBR+SE(test) 4.91 6.05 6.41 10.90 7.01 12.83 8.01 25.14 24.78 24.96

AMFB-FBANK(L=R=1,#1080) 5.15 5.79 7.28 10.87 8.10 13.25 8.40 23.70 25.05 24.37

AMFB-FBANK(L=R=1,#1080)+SE(test) 5.17 5.95 7.14 10.75 8.12 13.19 8.38 23.16 24.38 23.77

AMFB-FBANK(L=R=1,#1080)+sMBR 4.93 6.01 6.37 10.26 7.80 12.13 7.91 24.15 24.92 24.53

AMFB-FBANK(L=R=1,#1080)+sMBR+SE(test) 5.07 5.86 6.30 10.34 7.66 11.99 7.86 23.89 23.50 23.69
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system, using the MBR approach on state labels (sMBR)
with 4 iterations [65]. For comparison to results obtained
in this study in the utterance-based batch processing mode
for 1ch ASR task, we report our previous result [12], as
well as results from a second contribution to the REVERB
challenge [11] that was very successful and highlighted the
improvements by increasing the amount of training data
with DNNs.
In general, AMFB features improve the baseline (e.g.,

MFCCs with (S)GMM-HMM or FBANK features with
DNN-HMM). The proposed SE algorithm does not result
in obvious improvements for both investigated archi-
tectures that included a DNN (BN features and the
DNN-HMM) for SimData, however, it improves the per-
formance for RealData. By this, our best results were
obtained when combining the proposed front-end tech-
nologies with the DNN-HMM. Compared to our previous
workshop results [12], absolute WER improvements of
11.93 and 19.41 % are achieved for SimData and for
RealData in average, respectively.
Since it is known from many machine learning studies

that an extension of training data often improves clas-
sification scores, an additional set of experiments was
carried out based on DNN-HMM system which provides
the best results. The corresponding results are labeled
as DNN+(ext.) in Table 3. The extended training data
is generated based on [11], which consists of the WSJ-
CAM0 clean training data (7861 utterances), WSJCAM0
training data recorded with the secondary microphone
(7387 utterances), and the multi-condition training data
but with 20, 15, and 10 dB DSNRs (each with 7861 utter-
ances). Other parameter settings are kept the same as
described in Section 5.6. It is shown in [20] that enhanc-
ing the training data by a pre-processing strategy may also
degrade the DNN performance. Hence, our SE algorithm
is not applied to such extended training data, but only to
the test data (same as in [11]). It can be seen from Table 3
that an extension of the training data generally improves
the performance of DNN-HMM systems for both types
of features, presumably since DNNs profit from large
feature variance seen during training. Larger improve-
ments are obtained with RealData than with SimData,
which is consistent with the observation in [11]. How-
ever, 2 % absolute improvements for RealData in average
are obtained here, which is smaller than the 5 % improve-
ment for RealData reported in [11] (from 32.5 to 27.5 %).
This can probably be explained by the notion in [11] that
the parameter tuning was not performed with the DNN-
HMM trained without extended training data. AMFB-
FBANK features still outperform FBANK features by 1 %
absolute in average, and the SE algorithm (applied only
to the test data) provides further improvements for both,
SimData and RealData. This indicates that our proposed
front-end technologies are also beneficial for DNN-HMM

back-ends that are trained on large amount of speech
data. Furthermore, although the additional discrimina-
tive training (by sMBR) provides consistent improvements
for the corresponding DNN-HMM, the relative profits
are smaller compared to the corresponding boost for
the DNN-HMM systems without extended training data.
Extending the training data in such simulated way con-
sistently improves the performance for SimData, while it
does not always help for RealData. Possibly, discriminative
DNN training might overfit the extended training data,
which as a result does not fit well to distortions of the
realistic test data.

6 Conclusions
This study analyzed novel ASR front-end technologies and
their compatibility with established and recent back-end
schemes with the aim of improving ASR performance in
reverberant environments. A dereverberation algorithm
for speech enhancement and an auditory inspired fea-
ture extraction were evaluated based on the 1ch ASR task
of the REVERB challenge. The enhancement component
uses TCS and a parametric MMSE estimator to mitigate
the speech distortions and artifacts, together with a more
reliable late reverberation PSD estimator. For this, the
RIR model was selected with a novel concept for esti-
mating room parameters, i.e., the reverberation time T60
and the DRR. The auditory modulation filterbank fea-
tures have been analyzed, which are obtained by extract-
ing temporal amplitude modulations using a filterbank
(AMFB features). Our contribution to the REVERB chal-
lenge [12] has shown that the aforementioned techniques
are suitable to increase ASR performance also when com-
bined and linked with a standard back-end implemented
based on a well-established toolkit, i.e., HTK [13]. In
this contribution, we analyzed the respective techniques
for state-of-the-art implementations of different back-end
types, thus, considered traditional GMM-HMM systems,
their extension subspace GMM-HMM (SGMM-HMM),
as well as deep neural nets serving as acoustic model in a
DNN-HMM system.
For conventional GMM-HMM systems, we found sim-

ilar results as in [12]: The SE algorithm provides consis-
tent improvements, but now covering various reverberant
scenarios when a joint estimation of room parameters
(T60, DRR) is performed. When auditory AMFB features
are extracted from the enhanced signal, a further gain in
ASR performance is achieved. It has been also seen from
our previous work [12] that, when analyzing the individ-
ual benefit obtained by each step, a larger contribution to
this benefit came from the auditory feature component.
One reason for the improved performance using audi-
tory features is the inclusion of a larger temporal context
on feature level compared to MFCCs with D-DD. Hence,
in this contribution, we also investigated how temporally
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spliced MFCCs (down-projected to a lower-dimensional
space using LDA-MLLT) perform, since these features
also cover a wider temporal context. The spliced LDA-
MLLT features even lowered the WER, highlighting the
relevance of the inclusion of temporal context on a feature
level in reverberant conditions. However, AMFB features
produced lower WERs than the LDA-MLLT features. A
major difference between these two is that for auditory
features a local filtering of the spectrogram is performed
(that has the potential to locally increase the speech
energy, and could enhance local information such as for-
mant frequencies), in contrast to the spectral modulation
analysis in MFCCs.
For SGMM-HMM systems, we obtained generally

lower WERs compared to the GMM-HMM system,
while the overall trend of results (improvements from
speech enhancement and auditory features) was pre-
served. However, these improvements come at the cost
of increased complexity for training, which is especially
true for the high-dimensional AMFB features. As a solu-
tion to reduce the costs for training, the use of BN
features derived from a trained DNN was investigated.
The DNN used AMFB features as input, and the rela-
tively low-dimensional BN features were used as a com-
pact input representation for the SGMM-HMM. With
this procedure, even better performance than with high-
dimensional input was obtained (2–3 % WER reduc-
tion), and also the model complexity was considerably
reduced.
As a third back-end option, it was analyzed if the find-

ings observed for GMM-based architectures are trans-
ferable to hybrid systems that employ a DNN instead of
the GMM component. The conventional MFCC baseline
was replaced with a spectrogram input, which reflects the
capability of DNNs to self-learn the salient patterns in
the time-frequency domain when recognizing reverberant
speech. Following this notion, we modified the auditory
features to directly operate on a time-frequency represen-
tation instead of cepstral patterns. Additional splicing was
not performed, since we assume that our auditory fea-
tures capture a sufficient amount of temporal dynamics by
modulation filtering (that is intrinsic for AMFB features).
With this modification, our auditory features outperform
the competitive FBANK baseline, albeit with smaller rela-
tive improvements than observed for the (S)GMM-based
systems. Although it has been shown that DNNs are capa-
ble of processing a raw representation of the input signal
(e.g., Tueske et al. have shown that even using the time sig-
nal as input to a DNN produces acceptable results [67]),
this result shows that a pre-selection of input data (such as
the relevant modulation frequencies and the application
of knowledge about the auditory system) is an approach
that can help lowering WERs in ASR system with DNN-
HMM architectures.

For the combination of speech enhancement with deep
learning (either in the hybrid model or when using BN
features as an intermediate representation), the base-
line was not improved on average, and no significant
improvements were obtained when combining the speech
enhancement with auditory features for SimData of the
REVERB challenge. A possible explanation for this effect
is the fact that enhancement algorithms not only remove
effects of reverberation and additive noise, but also
the target speech is partially affected by the enhance-
ment process. This potentially removes fine-grain detail
of the target signal. If the removal of unwanted signal
parts does not outweigh this disadvantage—for instance
because the classifier is well-adapted to the interfer-
ences (the variations might be learnt by DNNs), and
hence does not profit from its removal—overall perfor-
mance would be harmed, which is probably the case
here. However, we also found that for strong mis-
matches of training and test data (in the RealData
scenario), our SE algorithm is still capable of improv-
ing ASR performance with DNNs, presumably since it
alleviates the train-test-mismatch and provides a better
match between the trained model and test observations.
Hence, in these situations that are of special importance
when a high robustness of the system is desired, both
the auditory feature processing as well as the proposed
speech enhancement result in an improved recognition
performance.
The use of additional training data for the DNN-HMM

system results in further improvements for both, the
FBANK baseline and our auditory features. Finally, our SE
algorithm is able to provide consistent improvements for
both, SimData and RealData, when it is only applied to
the test data. A possible explanation is that the robustness
of DNN-based recognizer—although being increased by
training on an extended data set—is not capable of com-
pletely ignoring cues induced by late reverberation and
additive noises. Hence, our SE algorithm can provide a
further benefit by partially removing the interferences
from the test data.
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