764 research outputs found

    Computational modelling of cancerous mutations in the EGFR/ERK signalling pathway

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2009 Orton et al.BACKGROUND: The Epidermal Growth Factor Receptor (EGFR) activated Extracellular-signal Regulated Kinase (ERK) pathway is a critical cell signalling pathway that relays the signal for a cell to proliferate from the plasma membrane to the nucleus. Deregulation of the EGFR/ERK pathway due to alterations affecting the expression or function of a number of pathway components has long been associated with numerous forms of cancer. Under normal conditions, Epidermal Growth Factor (EGF) stimulates a rapid but transient activation of ERK as the signal is rapidly shutdown. Whereas, under cancerous mutation conditions the ERK signal cannot be shutdown and is sustained resulting in the constitutive activation of ERK and continual cell proliferation. In this study, we have used computational modelling techniques to investigate what effects various cancerous alterations have on the signalling flow through the ERK pathway. RESULTS: We have generated a new model of the EGFR activated ERK pathway, which was verified by our own experimental data. We then altered our model to represent various cancerous situations such as Ras, B-Raf and EGFR mutations, as well as EGFR overexpression. Analysis of the models showed that different cancerous situations resulted in different signalling patterns through the ERK pathway, especially when compared to the normal EGF signal pattern. Our model predicts that cancerous EGFR mutation and overexpression signals almost exclusively via the Rap1 pathway, predicting that this pathway is the best target for drugs. Furthermore, our model also highlights the importance of receptor degradation in normal and cancerous EGFR signalling, and suggests that receptor degradation is a key difference between the signalling from the EGF and Nerve Growth Factor (NGF) receptors. CONCLUSION: Our results suggest that different routes to ERK activation are being utilised in different cancerous situations which therefore has interesting implications for drug selection strategies. We also conducted a comparison of the critical differences between signalling from different growth factor receptors (namely EGFR, mutated EGFR, NGF, and Insulin) with our results suggesting the difference between the systems are large scale and can be attributed to the presence/absence of entire pathways rather than subtle difference in individual rate constants between the systems.This work was funded by the Department of Trade and Industry (DTI), under their Bioscience Beacon project programme. AG was funded by an industrial PhD studentship from Scottish Enterprise and Cyclacel

    Symptoms of anxiety and depression are related to cardiovascular responses to active, but not passive, coping tasks

    Get PDF
    Objective: Anxiety and depression have been linked to blunted blood pressure (BP) and heart rate (HR) reactions to mental stress tests; however, most studies have not included indices of underlying hemodynamics nor multiple stress tasks. This study sought to examine the relationships of anxiety and depression with hemodynamic responses to acute active and passive coping tasks. Methods: A total of 104 participants completed the Hospital Anxiety and Depression Scales and mental arithmetic, speech, and cold pressor tasks while BP, HR, total peripheral resistance, and cardiac output (CO) were assessed. Results: After adjustment for traditional risk factors and baseline cardiovascular activity, depression scores were negatively associated with systolic BP, HR, and CO responses to the mental arithmetic task, while anxiety scores were inversely related to the systolic BP response to mental arithmetic. Conclusion: High anxiety or depression scores appear to be associated with blunted cardiac reactions to mental arithmetic (an active coping task), but not to the cold pressor test or speech tasks. Future research should further examine potential mechanisms and longitudinal pathways relating depression and anxiety to cardiovascular reactivity

    Evolutionary and pulsational properties of white dwarf stars

    Full text link
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie

    Historical institutionalism and the politics of sustainable energy transitions: a research agenda

    Get PDF
    Improving the understanding of the politics of sustainable energy transitions has become a major focus for research. This paper builds on recent interest in institutionalist approaches to consider in some depth the agenda arising from a historical institutionalist perspective on such transitions. It is argued that historical institutionalism is a valuable complement to socio-technical systems approaches, offering tools for the explicit analysis of institutional dynamics that are present but implicit in the latter framework, opening up new questions and providing useful empirical material relevant for the study of the wider political contexts within which transitions are emerging. Deploying a number of core concepts including veto players, power, unintended consequences, and positive and negative feedback in a variety of ways, the paper explores research agendas in two broad areas: understanding diversity in transition outcomes in terms of the effects of different institutional arrangements, and the understanding of transitions in terms of institutional development and change. A range of issues are explored, including: the roles of electoral and political institutions, regulatory agencies, the creation of politically credible commitment to transition policies, power and incumbency, institutional systems and varieties of capitalism, sources of regime stability and instability, policy feedback effects, and types of gradual institutional change. The paper concludes with some observations on the potential and limitations of historical institutionalism, and briefly considers the question of whether there may be specific institutional configurations that would facilitate more rapid sustainable energy transitions

    Seasonality and trend in blood lead levels of New York State children

    Get PDF
    BACKGROUND: Environmental exposure to lead remains a significant health problem for children. The costs of lead exposure in children are estimated to be considerably more than other childhood diseases of environmental origin. While long-term trends in blood lead levels (BLLs) among children are declining, seasonal variation persists. Cross-sectional studies have found a peak in summer months. Part of this variation may be due to increased exposure to lead paint on window sills and through increased contact with soils containing lead during the summer. The current study represents the largest published population-based study on seasonality and trends in the BLLs of children to date. In addition, the results offer a comparison of recent data on seasonality of BLLs in New York State children, to studies conducted over the past three decades. METHODS: 262,687 New York State children born between 1994 and 1997 were screened for blood lead within 2 weeks of their first or second birthdays. Time series analyses of blood lead data from these children were conducted to study the seasonality and trends of BLLs. RESULTS: Children's blood lead values showed a distinct seasonal cycle on top of a long-term decreasing trend. The geometric mean BLL declined by about 24% for children born between 1994 and 1997. The prevalence of elevated BLLs in two-year-olds was almost twice that in one-year-olds over the time period. Nearly twice as many children had elevated BLLs in the late summer compared to late winter/early spring. In this and previous cross-sectional studies, the amount of seasonality as a proportion of the mean ranged between 15% and 30%. CONCLUSION: Pediatricians should be aware of the seasonality of BLLs. For example, if a two-year-old receives a borderline result during the winter, it is possible that the levels would have been higher if he had been tested during the summer. However, physicians should continue to screen children at their normally scheduled well-child visits rather than delaying until summertime and possibly postponing the discovery of an elevated BLL. Age, season, and time trends still need to be considered in lead studies and result interpretation

    Computational Modeling of PI3K/AKT and MAPK Signaling Pathways in Melanoma Cancer

    Get PDF
    Background Malignant melanoma is an aggressive tumor of the skin and seems to be resistant to current therapeutic approaches. Melanocytic transformation is thought to occur by sequential accumulation of genetic and molecular alterations able to activate the Ras/Raf/MEK/ERK (MAPK) and/or the PI3K/AKT (AKT) signalling pathways. Specifically, mutations of B-RAF activate MAPK pathway resulting in cell cycle progression and apoptosis prevention. According to these findings, MAPK and AKT pathways may represent promising therapeutic targets for an otherwise devastating disease. Result Here we show a computational model able to simulate the main biochemical and metabolic interactions in the PI3K/AKT and MAPK pathways potentially involved in melanoma development. Overall, this computational approach may accelerate the drug discovery process and encourages the identification of novel pathway activators with consequent development of novel antioncogenic compounds to overcome tumor cell resistance to conventional therapeutic agents. The source code of the various versions of the model are available as S1 Archive
    corecore