6,311 research outputs found

    Application of quasi-homogeneous anisotropic laminates in grid-stiffened panel design

    Get PDF
    Composite laminates are derived for standard configurations with quasi-homogeneous anisotropic properties, whereby in-plane and out-of-plane stiffness properties are concomitant. Dimensionless parameters, and their relationship to the well-known ply- orientation-dependent lamination parameters, are also developed from which the elements of the extensional and bending stiffness matrices are readily calculated for any fiber/resin properties. The definitive list of laminate configurations for up to 21 plies is presented, together with graphical representations of the lamination parameter design space for standard ply orientations +45, -45, 0 and 90 degrees. Finally, the potential of quasi-homogeneous anisotropic laminates as an optimum design solution for anisogid structures is explored for cases where buckling and strength constraints are both active

    Properties of the Optokinetic Motor Fibres in the Rock Lobster: Build-Up, Flipback, Afterdischarge and Memory, Shown by Their Firing Patterns

    Get PDF
    The properties of sets of motor fibres responding to both clockwise and anticlockwise rotation have been studied in the oculomotor nerve of the rock lobster. There are probably three, but perhaps four, units in each set. None of these fibres has statocyst input, but there is weak input onto the tonic fibres from the antennal joints such that the eye turns in the direction toward which the antenna points. Many preparations show bilateral visual input onto all fibres but the degree of coupling between the eyes is very variable, and at times can be nearly totally absent. Depending on the speed of rotation the fibres show a gradual build-up in frequency, during rotation in the preferred direction, interrupted by flipbacks. During the fast stage of the resulting nystagmic movements all agonistic fibres can be completely inhibited and all antagonistic ones can be activated, usually for a period of about 0.5 sec. Fibre activity is demonstrated which appears to underlie an ‘optokinetic memory’ of contrasting target position in the visual field. It consists of (a) very prolonged after-discharges for a stationary striped pattern (b) resumption of discharges at an appropriate frequency after dark periods up to 2 min, and (c) adjustment of such frequencies to changes in stripe position during the dark period. The fibres show habituation to repeated stripe movement but the response can be dishabituated by passive rotation of the animal. The largest visual responses were obtained to intermediate speeds of stripe rotation (about 2°/sec)

    Characterization of ply mixing rules for non-symmetric forms of fully orthotropic laminates

    Get PDF
    Stacking sequence listings are presented for fully orthotropic angle-ply laminates, with up to 21 plies, together with rules for mixing these sequences to form laminates containing any number of plies. The mixing rules are demonstrated through an abridged set of sequences, which are characterized in terms of angle- and cross-ply sub-sequence symmetries. The abridged set of sequences is derived from a new definitive list that supersedes previously published listings. Stacking sequences are presented together with dimensionless parameters from which the bending stiffness terms are readily calculated and an assessment of the bending stiffness efficiency made for angle- and cross-ply sub-sequences. Expressions relating the dimensionless parameters to the well-known lamination parameters are also given, together with graphical representations of feasible domains for all sub-sequence symmetries contained in the definitive list. Feasible domains for extensionally isotropic and fully isotropic laminates are also presented as important sub-sets of fully orthotropic laminates. Finally, examples are given for tapered laminates with fully orthotropic properties, derived from compatible sequences in the definite list

    Input Sources and Properties of Position-Sensitive Oculomotor Fibres in the Rock Lobster, Panulirus Interruptus (Randall)

    Get PDF
    Sets of head-up, head-down, eye-up and eye-down motor fibres were studied in the oculomotor nerve of the rock lobster. An eye-withdrawal fibre was also investigated. Apart from the statocyst input, light distribution on the eyes has the strongest influence on the position-sensitive fibres. Weaker optokinetic input from moving targets is also present. Strongly habituating input is obtained from the antennal joints. This input causes orientation of the eye toward the direction in which the antenna points. The same antennule movement in the vertical plane can result in either excitation or inhibition of the head-down fibre, suggesting the presence of two opposing inputs, presumably from the statocysts and basal joint receptors of the antennule. The inputs on to the position-sensitive fibres which indicate body position are such as to stabilize the eye position in space during body movement. The optokinetic and antennal joint inputs are probably involved in tracking and antennal pointing reactions. The eye-withdrawal fibre is stimulated by touch of the head and around the eye, but is inhibited by the excited state

    The warp drive: hyper-fast travel within general relativity

    Full text link
    It is shown how, within the framework of general relativity and without the introduction of wormholes, it is possible to modify a spacetime in a way that allows a spaceship to travel with an arbitrarily large speed. By a purely local expansion of spacetime behind the spaceship and an opposite contraction in front of it, motion faster than the speed of light as seen by observers outside the disturbed region is possible. The resulting distortion is reminiscent of the ``warp drive'' of science fiction. However, just as it happens with wormholes, exotic matter will be needed in order to generate a distortion of spacetime like the one discussed here.Comment: 10 pages, 1 figure. Not previously available in gr-q

    A Study on Buckling Response of FML Members of ‘Classical’ Versus Thin-Ply Design

    Get PDF
    The paper is devoted to the buckling response and load carrying capacity of thin-walled open cross-section profiles made of hybrid, multi-layered materials; specifically Fiber Metal Laminates (FML) subjected to static compression loading. The objective of the study is a comparison of ‘classical’ Fibre Reinforced Plastic (FRP) layers versus thin-ply technology design. Analytical, finite element method and experimental investigations are performed to investigate different material combinations and sub-laminate tailoring strategies. These are compared with more common FML designs for thin-walled columns and rectangular plates

    Excision boundary conditions for black hole initial data

    Get PDF
    We define and extensively test a set of boundary conditions that can be applied at black hole excision surfaces when the Hamiltonian and momentum constraints of general relativity are solved within the conformal thin-sandwich formalism. These boundary conditions have been designed to result in black holes that are in quasiequilibrium and are completely general in the sense that they can be applied with any conformal three-geometry and slicing condition. Furthermore, we show that they retain precisely the freedom to specify an arbitrary spin on each black hole. Interestingly, we have been unable to find a boundary condition on the lapse that can be derived from a quasiequilibrium condition. Rather, we find evidence that the lapse boundary condition is part of the initial temporal gauge choice. To test these boundary conditions, we have extensively explored the case of a single black hole and the case of a binary system of equal-mass black holes, including the computation of quasi-circular orbits and the determination of the inner-most stable circular orbit. Our tests show that the boundary conditions work well.Comment: 23 pages, 23 figures, revtex4, corrected typos, added reference, minor content changes including additional post-Newtonian comparison. Version accepted by PR

    Local and global properties of conformally flat initial data for black hole collisions

    Get PDF
    We study physical properties of conformal initial value data for single and binary black hole configurations obtained using conformal-imaging and conformal-puncture methods. We investigate how the total mass M_tot of a dataset with two black holes depends on the configuration of linear or angular momentum and separation of the holes. The asymptotic behavior of M_tot with increasing separation allows us to make conclusions about an unphysical ``junk'' gravitation field introduced in the solutions by the conformal approaches. We also calculate the spatial distribution of scalar invariants of the Riemann tensor which determine the gravitational tidal forces. For single black hole configurations, these are compared to known analytical solutions. Spatial distribution of the invariants allows us to make certain conclusions about the local distribution of the additional field in the numerical datasets

    Robust evolution system for Numerical Relativity

    Get PDF
    The paper combines theoretical and applied ideas which have been previously considered separately into a single set of evolution equations for Numerical Relativity. New numerical ingredients are presented which avoid gauge pathologies and allow one to perform robust 3D calculations. The potential of the resulting numerical code is demonstrated by using the Schwarzschild black hole as a test-bed. Its evolution can be followed up to times greater than one hundred black hole masses.Comment: 11 pages, 4 figures; figure correcte
    corecore