We study physical properties of conformal initial value data for single and
binary black hole configurations obtained using conformal-imaging and
conformal-puncture methods. We investigate how the total mass M_tot of a
dataset with two black holes depends on the configuration of linear or angular
momentum and separation of the holes. The asymptotic behavior of M_tot with
increasing separation allows us to make conclusions about an unphysical
``junk'' gravitation field introduced in the solutions by the conformal
approaches. We also calculate the spatial distribution of scalar invariants of
the Riemann tensor which determine the gravitational tidal forces. For single
black hole configurations, these are compared to known analytical solutions.
Spatial distribution of the invariants allows us to make certain conclusions
about the local distribution of the additional field in the numerical datasets