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Application of Quasi-Homogeneous Anisotropic Laminates 
in Grid-stiffened Panel Design 

C. B. York* 
University of Glasgow, Glasgow, Scotland, G12 8QQ 

D. Kennedy† 
Cardiff University, Cardiff, Wales, CF24 3AA 

Composite laminates are derived for standard configurations with quasi-homogeneous 
anisotropic properties, whereby in-plane and out-of-plane stiffness properties are 
concomitant.  Dimensionless parameters, and their relationship to the well-known ply-
orientation-dependent lamination parameters, are also developed from which the elements 
of the extensional and bending stiffness matrices are readily calculated for any fiber/resin 
properties.  The definitive list of laminate configurations for up to 21 plies is presented, 
together with graphical representations of the lamination parameter design space for 
standard ply orientations 45, 0 and 90 .  Finally, the potential of quasi-homogeneous 
anisotropic laminates as an optimum design solution for anisogid structures is explored for 
cases where buckling and strength constraints are both active.   

Nomenclature 
a,b = Length and width of each repeating bay. 
A,Aij = extensional (membrane) stiffness matrix and its elements (i,j = 1, 2, 6). 
B,Bij = bending-extension-coupling stiffness matrix and its elements (i,j = 1, 2, 6). 
D,Dij = bending (flexural) stiffness matrix and its elements (i,j = 1, 2, 6). 
E1,E2 = Young’s moduli parallel to and normal to fibre direction. 
G12 = in-plane shear modulus. 
H = laminate thickness (= n  t). 
k = ply number. 
n = number of plies in laminate stacking sequence. 
n ,n ,n  = membrane stiffness parameters for angle-ply and cross-ply sub-sequences. 
N = in-plane force resultants (= {Nx,Ny,Nxy}T). 
Nx,Ny = in-plane axial load per unit length. 
Nxy = in-plane shear flow. 
M = out-of-plane moment resultants (= {Mx,My,Mxy}T). 
Mx,My = bending moments per unit length about principal axes. 
Mxy = twist moment per unit length. 
Qij = reduced stiffness (i,j = 1, 2, 6). 
Q ij = transformed reduced stiffness (i,j = 1, 2, 6). 
t = ply thickness. 
Ui = laminate invariants (i=1,2,…,5). 
x,y,z = principal axes. 

 = skew angle. 
xy = in-plane shear strain. 
 = in-plane strains (= { x, y, xy}T). 
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x, y = in-plane axial strains. 
 = curvatures (= { x, y, xy}T). 
x, y = curvatures about principal axes. 
xy = twist curvature. 
1-4 = lamination parameters for extensional stiffness ( 1, 2, 3, 4). 
9-12 = lamination parameters for bending stiffness ( 9, 10, 11, 12). 
 = phase shift across adjacent bays. 
, , ,  = bending stiffness parameters for laminate, and angle-ply and cross-ply sub-sequences. 
, ,  = angle plies, used in stacking sequence definition. 
,  = cross-plies, used in stacking sequence definition. 

 

Keywords 
Quasi-Homogeneous, Anisogrid, Optimization, Buckling, Strength Constraints. 

 

I. Introduction 
 
A Quasi-Homogeneous Anisotropic Laminate, or QHAL, is described1 as having identical anisotropy with respect to 
both extension and bending, providing maximum (and minimum) in-plane and out-of-plane reinforcement in the 
same direction, and thus providing a minimum mass solution.  The extensional and bending stiffness properties of a 
QHAL may therefore be described as concomitant and as such, represent a simplification in design, since only the 
extensional stiffness properties need to be calculated.  However, to provide a minimum mass solution implies that 
the extensional stiffness properties satisfy the material strength constraints in the same way that the bending stiffness 
properties satisfy the buckling constraints, where the latter is strongly influenced by the planform geometry.   

It is logical to suppose that the optimum buckling solution for a rectangular plate arises from a fully uncoupled 
orthotropic laminate, since anisotropy in bending, or more correctly bending-twisting coupling, which generally 
occurs in balanced and symmetric designs, is known to reduce the compression buckling strength.  Equally, the 
same rectangular plate is better served by an unbalanced laminate if subject only to pure shear loading.  However, 
skew planform geometry would provide a similar buckling strength advantage without requiring a change in 
laminate design.  The optimum solution is less apparent for multiple load cases and the question must be raised as to 
whether optimized solutions, satisfying buckling and strength constraints simultaneously, arise from Quasi-
Homogeneous Anisotropic Laminates. 

To investigate such a hypothesis, this study will focus on the initial buckling response of continuous composite 
plate arrays, subject to material strength constraints, to assess the potential of quasi-homogeneous anisotropic 
laminates as an optimum design solution for a range of planform configurations, including isogrid and orthogrid, 
together with more general configurations, termed anisogrid.   

Figure 1 illustrates typical planform geometries, i.e. a rectangular array of supports, simulating an orthogrid 
panel and anisogrid panels, used to describe hexagonal or skew planform geometries.  An offset isogrid 
configuration is also considered, but not shown, which arises because of practical manufacturing considerations, to 
reduce the number of overlapping plies at stiffener intersections, thus reducing the likelihood of stiffener separation 
from delamination propagation which is often initiated at these sites.  Increasing this offset gives rise to the eccentric 
isogrid variant or anisogrid, whereby the orthogonal, or x-axis aligned support is positioned along the centre-line of 
the bay.  The planform geometry now consists of adjacent triangular and hexagonal cells. 
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Figure 1 – Example grid stiffened panel array geometries (after Ref. 3) with equivalent planform area (aspect ratio 
a/b = 1.15) for (a) rectangular (orthogrid) and hexagonal (anisogrid); (b) skew and regular hexagonal.  The 
percentage increase in perimeter length, above the rectangular datum, is indicated alongside thumbnail sketches of 
each planform shape.  
 

The outcomes of this study form, in part, an extension to a previous investigation of buckling interaction for 
metallic2 and fully uncoupled laminate3 panel structures.  As in the previous work, configurations representing 
anisogrid panel arrays are again a primary focus of the investigation, having been shown to possess significant 
buckling strength advantages over the more common square planform.  These configurations also have a net 
reduction in panel weight due to the use of novel support configurations, which gives rise to a reduction in the length 
of the supporting perimeter.  The stiffeners are modeled as rigid point supports with rotational freedom so that 
effects on plate buckling behavior resulting from the continuous nature of the plate can be studied independently of 
the bending and torsional interactions, which normally arise from the supporting stiffeners.  Results will demonstrate 
the relative increase in buckling strength between laminates with concomitant and non-concomitant properties, 
where concomitant anisotropic properties implies matching shear-extension and bending-twisting coupling and 
laminates with these matching properties are generally referred to as Quasi-Homogeneous Anisotropic Laminates1.  
Fully isotropic laminate configurations are employed as a benchmark case4 to highlight the combined effects of 
shear-extension and bending-twisting coupling.  The effect of uncoupled, Quasi-Homogeneous Orthotropic 
Laminates4 will also be considered in order to isolate the effects of anisotropy on the concomitant properties.   

II.   Characterization of Laminated Composite Material 
Composite laminates are typically characterized in terms of their response to mechanical (and/or thermal) 

loading, which is generally associated with a description of the coupling behavior, unique to this type of material.  
The well-known ABD relation from classical lamination theory is often expressed using compact notation: 
 

 
M
N

 = 
DB
BA

 (1) 

The coupling behavior, which is dependent on the form of the elements in each of the extensional (A), coupling (B) 
and bending (D) stiffness matrices, is conveniently described by an extended subscript notation, defined previously 
in an Engineering Sciences Data Unit (ESDU) data item5.  Here, a balanced and symmetric stacking sequence, 
which generally possesses bending anisotropy, gives rise to coupling between bending and twisting and are referred 
to by the designation ASB0DF, signifying that the elements of the extensional stiffness matrix (AS) have the Simple,  
uncoupled form: 
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66

22

1211

ASym.
0A
0AA

 (2) 

The bending-extension coupling matrix (B0) is null, i.e. no coupling between in-plane and out-of-plane responses, 
whilst all elements of the bending stiffness matrix (DF) are Finite, and have the form: 

 

66

2622

161211

DSym.
DD
DDD

 (3) 

The laminates investigated in this study possess both in-plane coupling, i.e. between the shear force resultant 
(Nxy) and extensional strains ( x, y), i.e. A16 = A26  0, and out-of-plane coupling, i.e. between moment resultants 
(Mx, My) and twist curvature ( xy), i.e. D16 = D26  0. 

It is clear from the literature6,7 that the extensional (A) and bending (D) stiffness matrices possess one of two 
forms: either fully uncoupled (AS, DS) or fully coupled (AF, DF).  The isotropic form of these matrices, where DI 
and/or AI replace DS and/or AS respectively, are excluded because they have been shown4 to represent subsets of the 
specially orthotropic (uncoupled) form.  An additional subset4 includes laminates for which the elements of the 
bending stiffness matrix are related directly to those of the extensional stiffness matrix and the laminate thickness, H 
by:  

 Dij = AijH2/12 (4) 

This subset represents a significant simplification in design, and for the uncoupled form (AS, DS) can be described as 
a Quasi-Homogeneous Orthotropic Laminate, or QHOL, providing identical orthotropy with respect to both 
extension and bending, thus providing maximum (and minimum) in-plane and out-of-plane reinforcement in the 
same direction.  The coupled form (AF, DF), which is the primary focus of the current article, has been described 
elsewhere1 as a Quasi-Homogeneous Anisotropic Laminate, or QHAL, possessing identical anisotropy with respect 
to both extension and bending, i.e. shear-extension and bending-twisting coupling.  It has also been described as 
representing an optimum design solution due to the concomitant properties, which provide the maximum 
reinforcement in same direction for both extension and bending.  This hypothesis has, however, yet to be proven.  

The illustrations presented in Fig. 2 represent the thermal (contraction) response of four families of laminates 
that remain flat following a typical elevated temperature curing process. The AFB0DF designation represents the 
family of laminates from which quasi-homogeneous configurations are sought; and the laminate stacking sequences 
presented are merely representative examples from the minimum ply number grouping for each designation.  A 
response-based labeling is used in the caption, but is complementary to the subscript labeling system used above, 
which builds on the Engineering Sciences Data Unit subscript notation5.  The fully uncoupled form (ASB0DS) is 
described as a Simple laminate, whereas the coupled forms are described in terms of the response that the laminate 
exhibits to various combination of force and moment resultants, using a cause and effect relationship.  A laminate is 
therefore described as an E-S laminate if Extension (E) causes a Shearing (S) effect, whereas if Bending causes a 
Twisting effect then the laminate is described as a B-T laminate.  Note that each cause and effect pair is underlined.   

The cause and effect labeling used in the caption to Fig. 2 describes the coupling relationship between an applied 
(bending and/or twisting) moment resultant and the associated extensional (and/or shearing) strains, whereas Table 1 
describes the coupling relationship between an applied (axial and/or shear and/or thermal) force resultant and the 
associated curvatures (and/or twist-curvature) for an unrestrained plate.  Each pair of cause and effect descriptors of 
the response-based labeling is therefore reversible.   
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ASB0DS 
[ / 2/ / 2/ ]T 

ASB0DF 
[ / / / ]T 

AFB0DF 
[ / ]T 

AFB0DS 
[ / / / / 3/ / 3/ / ]T 

Figure 2 – Coupling responses, due to free thermal contraction, for the: (ASB0DS) Simple laminate; (ASB0DF) B-T 
laminates with bending-twisting coupling; (AFB0DF) E-S;B-T laminates with extension-shearing and bending-
twisting coupling and; (AFB0DS) E-S laminates with extension-shearing coupling. Displacement magnitudes are not 
to scale. 
 
Table 1 – Response based labeling with associated form of matrix for: (a) extensional stiffness and; (b) bending 
stiffness.  Compact notation subscripts, corresponding to specific form of stiffness matrices, are summarized in the 
table footnotes. 

(a) 
Compact notation (after Ref. 5) Response-based labeling Matrix form  

AS  Simple laminate 

66

2221

1211

A00
0AA
0AA

  

AF  Shear-Extension; 
S-E 

666261

262221

161211

AAA
AAA
AAA

  

 
(b) 

Compact notation (after Ref. 5) Response-based labeling Matrix form  

DS  Simple laminate 

66

2221

1211

D00
0DD
0DD

  

DF  Twisting-Bending; 
T-B 

666261

262221

161211

DDD
DDD
DDD

  

Summary of Matrix sub-scripts for compact notation 
0 = All elements (of stiffness matrix) zero. 
F = All elements Finite. 
S = Specially orthotropic (uncoupled or Simple) form. 
 

III. Calculation of extensional, coupling and bending stiffness terms 
The calculation procedure for the elements (Aij and Dij) of the extensional (A) and bending (D) stiffness 

matrices, using the dimensionless parameters provided in the appendix, are as follows: 

 Aij = {n (n /n )Q ij  + n (1  n /n )Q ij  + n Q ij  + n Q ij }  t (5) 

 Dij = { /2  Q ij  + /2  Q ij  + Q ij  + Q ij }  t3/12 (6) 

noting that all laminates have zero coupling stiffness matrix (B = 0) in this study. 



 

American Institute of Aeronautics and Astronautics 

6

The form of Eq. (6) was developed for the Simple (uncoupled) form of the bending stiffness matrix but is readily 
modified to account for the presence of bending-twisting coupling by replacing /2  Q ij  with  ( / )  Q ij  or 

  Q ij , and /2  Q ij  with (1  / )  Q ij , or   Q ij .  

 Dij = {  ( / )  Q ij  + (1  / )  Q ij  + Q ij  + Q ij }  t3/12 (7) 

The use of this modified equation requires the calculation of an additional stiffness parameter, , relating to the 
bending stiffness contribution of positive ( ) angle plies.  However, for quasi-homogeneous anisotropic laminates, 
Eqs (6) or (7) may be replaced by Eq. (4). 

The transformed reduced stiffness terms in Eqs (5) and (6) are given by: 

 Q 11 = Q11cos4  + 2(Q12 + 2Q66)cos2 sin2  + Q22sin4  

 Q 12 = Q 21 = (Q11 + Q22  4Q66)cos2 sin2  + Q12(cos4  + sin4 ) 

 Q 16 = Q 61 = {(Q11  Q12  2Q66)cos2  + (Q12  Q22 + 2Q66)sin2 }cos sin  

 Q 22 = Q11sin4  + 2(Q12 + 2Q66)cos2 sin2  + Q22cos4  

 Q 26 = Q 62 = {(Q11  Q12  2Q66)sin2  + (Q12  Q22 + 2Q66)cos2 }cos sin  

 Q 66 = (Q11 + Q22  2Q12  2Q66)cos2 sin2  + Q66(cos4  + sin4 ) (8) 

and the reduced stiffness terms by: 

 Q11 = E1/(1  12 21) 

 Q12 = 12E2/(1  12 21) = 21E1/(1  12 21) 

 Q22 = E2/(1  12 21) 

 Q66 = G12 (9) 

For optimum design of angle ply laminates, lamination parameters are often preferred, since these allow the 
stiffness terms to be expressed as linear variables.  The optimized lamination parameters may then be matched 
against a corresponding set of laminate stacking sequences.  In the context of the quasi-homogeneous anisotropic 
laminates presented in the current article, only 4 lamination parameters are required and are related through the 
following expressions: 

 1 (= 9) = {n (n /n )cos(2 ) + n (1 - n /n )cos(2 ) + n cos(2 ) + n cos(2 )}/n 

 2 (= 10) = {n (n /n )cos(4 ) + n (1 - n /n )cos(4 ) + n cos(4 ) + n cos(4 )}/n 

 3 (= 11) = {n (n /n )sin(2 ) + n (1 - n /n )sin(2 ) + n sin(2 ) + n sin(2 )}/n 

 4 (= 12) = {n (n /n )sin(4 ) + n (1 - n /n )sin(4 ) + n sin(4 ) + n sin(4 )}/n (10) 

Note that for laminates consisting of standard ply angle orientations, i.e. +45, -45, 0 and 90 , only 3 lamination 
parameters are required, since 4 = 0, and the extent of this 3-dimensional lamination parameter design space can be 
readily illustrated.  

For non-homogeneous properties, a further 4 lamination parameters are also required: 

 9 = { ( / )cos(2 ) + (1 - / )cos(2 ) + cos(2 ) + cos(2 )}/  
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 10 = { ( / )cos(4 ) + (1 - / )cos(4 ) + cos(4 ) + cos(4 )}/  

 11 = { ( / )sin(2 ) + (1 - / )sin(2 ) + sin(2 ) + sin(2 )}/  

 12 = { ( / )sin(4 ) + (1 - / )sin(4 ) + sin(4 ) + sin(4 )}/  (11) 

Elements of the extensionally anisotropic, or extension-shear coupled stiffness matrix (AF) are related to the 
lamination parameters by: 

 A11 = {U1 + 1U2 + 2U3}  H  

 A12 = A21 = {- 2U3 + U4}  H  

 A22 = {U1  1U2 + 2U3}  H  

 A66 = {- 2U3 + U5}  H  

 A16 = A61 = { 3U2/2 + 4U3}  H  

 A26 = A62 = { 3U2/2  4U3}  H (12) 

Elements of the bending-twisting coupled stiffness matrix (DF) are calculated from Eq. (4) or for non-quasi-
homogeneous properties: 

 D11 = {U1 + 9U2 + 10U3}  H3/12  

 D12 = D21 = {U4  10U3}  H3/12  

 D16 = D61 = { 11U2/2 + 12U3}  H3/12  

 D22 = {U1  9U2 + 10U3}  H3/12  

 D26 = D62 = { 11U2/2  12U3}  H3/12  

 D66 = {- 10U3 + U5}  H3/12 (13) 

where the laminate invariants are given in terms of the reduced stiffness properties of Eqs (9) by: 

 U1 = {3Q11 + 3Q22 + 2Q12 + 4Q66}/8 

 U2 = {Q11 – Q22}/2 

 U3 = {Q11 + Q22  2Q12  4Q66}/8 

 U4 = {Q11 + Q22 + 6Q12  4Q66}/8 

 U5 = {Q11 + Q22  2Q12 + 4Q66}/8 (14) 
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IV. The Equivalent Fully Isotropic Laminate 

A Fully Isotropic Laminate, or FIL, offers a benchmark stacking sequence configuration, against which all 
laminates may be compared.  However, for thin laminates, with up to 21 plies, these so called benchmark 
configurations exist only for 18-ply laminates, e.g.  

 [60/-602/03/602/0/-60/602/-603/02/60]T (15) 

Additionally, all 18-ply FILs correspond only to /3 isotropy, whereby ply orientations have 60  separations, rather 
than the 45  separations in standard ply orientations, as assumed in this article.  This has consequences for the 
development of failure envelopes for strength comparisons, described later. 

To overcome this deficiency, the concept of an Equivalent Fully Isotropic Laminate, with any number of plies or 
ply angles, may be adopted.  The stiffness properties for FIL configuration are now replaced by a set of stiffness 
properties for the Equivalent FIL, for which no physical stacking sequence configuration exists.  The stiffness 
properties for the Equivalent Fully Isotropic Laminate are readily obtained (Tsai and Hahn 1980) from the laminate 
invariants of Eqs (14), expressed in terms of their isotropic material counterparts, where E1 = E2, 12 = 21, etc.: 

 EIso = 2(1 + Iso)GIso = U1(1 – Iso
2) (16) 

where 

 Iso = U4/U1 (17) 

and 

 GIso = U5 (18) 

The Young’s modulus, EIso, and Poisson ratio, Iso, and shear modulus, GIso, are the equivalent isotropic material 
properties of a composite laminate of thickness, H, corresponding to the total number of plies, n, of uniform 
thickness, t, and from which the equivalent isotropic stiffness properties for laminates with any number of plies then 
follows: 

 AIso = A11 = A22 = EIsoH/(1 – Iso
2) = U1H (19) 

 A12 = IsoA11 (20) 

 A66 = U5H (21) 

The bending stiffness elements follow from Eq. (4): 

 DIso = EIsoH3/(1 – Iso
2)/12 = U1H3/12 (22) 

Equation (22) is also used to normalize the buckling results that follow. 
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V. Stiffness and Strength properties 
A typical IM7/8552 carbon-fiber/epoxy material is adopted, for which the properties are listed in Table 2.  

 
Table 2 - Material properties for Carbon/Epoxy composite 
 

Material properites:  Carbon/Epoxy IM7/8552 
Compressive moduli E1 143 GPa 20,740,397 psi 
 E2 9.6 GPa 1,392,362 psi 
Shear modulus G12 5.2 GPa 754,196 psi 
Poison’s ratio 12 0.338 0.338 
Density 1.57 g/cm3 0.057 lb/in3 
Tensile moduli E1 176 GPa 25,526,643 psi 
 E2 8.9 GPa 1,290,836 psi 
Compressive strength 1

C 885 MPa 128,358 psi 
 2

C 233 MPa 33,794 psi 
 12

F 56.3 MPa 8,166 psi 
Tensile strength 1

T -2,352 MPa 341,128,774 psi 
 2

T -47 MPa 6,816,774 psi 
 

For a lamina thickness t = 0.1397mm and stacking sequence [ / / 2/ / / / / / / / / / / / / 2/ / ]T, 
the non-dimensional parameters described above are verified by the calculations in Table 3, where the first two 
columns provide the ply number, k, and orientation, , respectively. Subsequent columns illustrate the summations, 
for each ply orientation, of (zk – zk-1), (zk

2 – zk-1
2) and (zk

3 – zk-1
3), relating to the A, B and D matrices, respectively. 

The distance from the laminate mid-plane, z, is expressed in term of ply thickness t, which is assumed to be of unit 
value. 

 
Table 3 – Calculation procedure for the non-dimensional parameters for an AFB0DF laminate: 
[ / / 2/ / / / / / / / / / / / / 2/ / ]T. 

  A B D
Ply 

(zk – zk-1) 
 A A A A

(zk
2 – zk-1

2)
 B B B B

(zk
3 – zk-1

3)
D D D D

   4 6 4 6  0 0 0 0  400 600 400 600

1  1  1    -19 -19    271  271    
2  1  1   -17  -17   217  217   
3  1  1 -15  -15 169  169
4  1  1 -13 -13 127  127
5  1  1  -11  -11  91  91  
6  1  1   -9  -9   61  61   
7  1  1  -7  -7  37  37  
8  1  1   -5  -5   19  19   
9  1  1 -3  -3 7  7 

10  1 1  -1 -1  1  1  
11  1  1    1 1    1  1    
12  1  1   3  3   7  7   
13  1  1 5 5 19  19 
14  1  1    7 7    37  37    
15  1  1 9  9 61  61 
16  1  1    11 11    91  91    
17  1  1   13  13   127  127   
18  1  1   15  15   169  169   
19  1  1 17 17 217  217
20  1  1  19  19  271  271  
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The non-dimensional parameters arising from the summations of Table 3 are: n  (= A ) = 4, n  = 6, n  = 4 and 

n  = 6, and  (= 4  D ) = 1600,  = 2400,  = 1600 and  = 2400, where n3 = 203 =  =  +  +  +  = 
8000 and  =  +  = 4000. The B matrix summations confirm that Bij = 0 for this laminate. 
For fiber angles  = 45  and 0  in place of symbols  and  respectively, the transformed reduced stiffness 
properties are given in Table 4, which are readily calculated using Eqs (8). 
 
Table 4 – Transformed reduced stiffness (N/mm2) for IM7/8552 carbon-fiber/epoxy with  = -45 , 45 , 0  and 90 . 

 Q 11 Q 12 Q 16 Q 22 Q 26 Q 66 
-45 45,280 34,880 -33,608 45,280 -33,608 36,810 
45 45,280 34,880 33,608 45,280 33,608 36,810 
0 144,105 3,270 0 9,674 0 5,200 
90 9,674 3,270 0 144,105 0 5,200 

 
Equations (5) and (7) yield the final stiffness matrices for laminate: [ / / 2/ / / / / / / / / / / / / 2/ / ]T 

 [45/-45/902/0/-45/0/-45/90/0/45/-45/90/45/90/45/-452/90/0]T: 

 

66

2622

161211

ASym.
AA
AAA

 = 
58,688Sym.
9,390-189,451
9,390-53,295151,891

N/mm 

 

66

2622

161211

DSym.
DD
DDD

 = 
38,179Sym.
6,109-123,245
6,109-34,67098,810

N.mm 

and the quasi-homogeneous nature of this anisotropic laminate is readily verified by Eq. (4).   
 

VI. Laminate Configurations and Lamination Parameter Design Space 
Table 5 presents the number of stacking sequence configurations in the definitive list of AFB0DF laminates, with 

up to 21 plies, and Table 6 presents the corresponding number with quasi-homogeneous anisotropic properties.  This 
class of laminate represents a significant simplification in the laminate design process, given that the bending 
stiffness follows directly from the extensional stiffness properties, see Eq. (4).  In the appendix, Table 9 presents the 
stacking sequence configurations and non-dimensional parameters for Quasi-Homogeneous Anisotropic Laminates, 
or QHALs, for each ply number grouping (n) in abridged form.   

For the purposes of assessing the buckling performance under material strength constraints, QHALs are 
compared to a non-conforming group of laminates where the constraint between extensional anisotropy and bending 
anisotropy is relaxed, i.e. D16  A16  H2/12 and D26  A26  H2/12; all other (orthotropic) stiffness elements remain 
concomitant, as defined in Eq. (4).  The number of solutions for each ply number grouping, n, for Pseudo-QHALs is 
reported in Table 7.   
 
Table 5 – Number of laminate stacking sequence configurations with extension-shearing and bending-twisting 
coupling for each ply number (n) grouping.  
n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

A
FB

0D
F 

1 4 3 14
 

12
 

66
 

51
 

32
2 

24
2 

1,
84

4 

1,
19

2 

11
,6

52
 

6,
84

8 

83
,5

74
 

43
,8

31
 

65
4,

80
4 

31
9,

50
2 

5,
73

3,
94

6 

2,
58

4,
22

8 

53
,5

88
,4

64
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Table 6 – Number of quasi-homogeneous anisotropic laminate (QHAL) stacking sequence configurations for each 
ply number (n) grouping. These laminate designs possess extension-shearing and bending-twisting coupling and Dij 
= AijH2/12.   

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

AFB0DF 1 1 1 1 4 3 1 1 13 3 52 29 48 47 209 82 598 367 381 
 
Table 7 – Number of non-conforming or pseudo quasi-homogeneous anisotropic laminate stacking sequence 
configurations, for each ply number (n) grouping. These laminate designs are similar to those of Table 6, but whilst 
the orthotropic elements of the stiffness matrices are quasi-homogeneous, the anisotropic elements are not, i.e. D16  
A16  H2/12 and D26  A26  H2/12.  

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

AFB0DF 1 0 3 3 14 4 25 23 97 39 428 325 1,264 622 4,855 3,136 21,188 9,997 55,581
 

The lamination parameter design spaces for QHOLs and non-conforming quasi-homogeneous anisotropic 
laminates are illustrated in Figs 3 and 4, respectively. 
 

 

 
Figure 3 – Third angle projection of the lamination parameter design space for the 1,842 quasi-homogeneous 
anisotropic laminates with up to 21 plies.  Circular and parabolic regions are bounds for laminates with arbitrary ply 
angle orientations.  Standard ply orientations 45, 0 and 90 , are bounded by diamond and triangular shaped 
regions; illustrated as an isometric view. 
 

Standard ply orientations 45, 0 and 90  are bounded by the diamond and triangular shaped regions of Fig. 3, 
but closer inspection of the isometric view reveals that, with the exception of 4 laminates detailed below, 1,838 
solutions lie either within the plane of the front triangular face or the plane of the two triangular side faces only.   
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Figure 4 – Third angle projection of the lamination parameter design space for the 99,447 pseudo quasi-
homogeneous anisotropic laminates with up to 21 plies.  Circular and parabolic regions are bounds for laminates 
with arbitrary ply angle orientations.  Standard ply orientations 45, 0 and 90 , are bounded by diamond and 
triangular shaped regions; illustrated as an isometric projection, repeated from Fig. 3. 
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Four exceptions are: 
[45/-45/90/90/0/-45/0/-45/90/0/45/-45/90/45/90/45/-45/-45/90/0]T 
[45/90/-45/-45/0/90/0/90/-45/0/45/90/-45/45/-45/45/90/90/-45/0]T 
[45/-45/0/0/90/-45/90/-45/0/90/45/-45/0/45/0/45/-45/-45/0/90]T 
[45/0/-45/-45/90/0/90/0/-45/90/45/0/-45/45/-45/45/0/0/-45/90]T 

and are the only solutions that include all 4 standard ply orientations. Their lamination parameters, 1,9= -0.1, -0.1, 
0.1 and 0.1, respectively, and they share the same lamination parameters 2,10 = 0 and 3,11 = 0.1. A similar discovery 
was made4 for Quasi-Homogeneous Orthotropic Laminates (QHOLs), in which only a solution exists for laminates 
with up to 21 plies, i.e. [45/0/902/-45/0/-45/0/90/-45/45/0/90/45/90/45/02/90/-45] . 

Similarly, of the 99,447 Pseudo-QHAL solutions illustrated on Fig. 4, only 924 include all 4 standard ply 
orientations, hence the vast majority of the lamination parameters lie on the bounding faces of the design space. 
Note that only the orthotropic stiffness elements of the Pseudo-QHAL solutions are concomitant, hence the design 
spaces representing the extensional and bending stiffness properties are identical only on one ( 1,9, 2,10) plane. 

Six groups of 18-ply QHALs from Table 6 and their comparators from Table 7 are used for the comparisons that 
follow.  These were selected on the basis of the non-dimensional parameters, accounting for different combinations 
of ply orientations and for the most extreme cases of anisotropy.  The stacking sequences for each group are listed in 
Table 10 in the appendix, the corresponding non-dimensional parameters are listed in Table 11 and stiffness 
matrices for each QHAL are given in Table 12; derived from the material properties listed in Table 2.  The Pseudo-
QHAL comparators share identical orthotropic stiffness properties to their QHAL counterparts, therefore only 
differences in the anisotropic stiffness properties are identified in Table 12. 

VII. Design of laminated anisogrid panels 

Computer Modeling 
The analysis involves an exact, infinite strip approach, in the sense that it is based on the exact solution of the 

classical thin plate differential equations but while longitudinal plate boundaries (or edges) are modelled exactly, the 
transverse boundaries are closely approximated by the use of a sufficient number of point constraints.  These point 
constraints, forming the rigid supports described in the previous section, are introduced by the method of Lagrangian 
multipliers, whereby compatible wavelengths are coupled to achieve a predefined pattern of node points, i.e. points 
of enforced zero displacement.  These node points repeat at intervals of the panel length a, see Fig. 5(a), since the 
analysis accounts for an infinitely long plate, thus forming a series of plates joined end to end.  The rigid supports, 
arranged to form skew supports in previous work, are shown here as a hexagonal support pattern.  To form an array 
of hexagonal supports this pattern must also repeat in the transverse direction, but to avoid incompatible 
arrangement of supports in adjacent bays, as illustrated in Fig. 5(b), a phase shift correction, , must be introduced 
as demonstrated in Fig. 5(c).  With few geometric exceptions, the new buckling predictions that follow are only 
possible through this enhancement to existing theory8 and the associated computer programVICONOPT9, to allow 
for plate assemblies that are continuous over supports at regular longitudinal and transverse intervals, such that the 
transverse supports are correctly orienated across adjacent bays at skew angle , see Fig. 5(c).  

Laminate Design 
This section explores whether design guidelines can be developed for non-standard geometries and whether 

concomitant laminate properties offer any form of optimal solution when the design envelope extends across a wide 
range of combined load cases, when strength constraints are active.  Strength constraints are represented by Tsai-Wu 
failure criteria, corresponding to:  

 F1 1 + F2 2 + F11 1
2 + F22 2

2 + F66 12
2 - (F11F22)½ 1 1 = 1 (23) 

Individual terms were derived from the strength constraint data listed in Table 2 as follows: 
F1 = (1/ 1

T + 1/ 1
C) = 704.773  10-6 mm2/N 

F2 = (1/ 2
T + 1/ 2

C) = -16,984.750  10-6 mm2/N 
F11 = -1/ 1

T
1

C = 0.480  10-6 (mm2/N)2 

F22 = -1/ 2
T

2
C = 91.316  10-6 (mm2/N)2 

F66 = (1/ 12
F)2 = 315.488  10-6 (mm2/N)2 
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Figure 5 - Support conditions and positive stress directions for hexagonal plate (after Ref. 3): (a) with uniaxial 
continuity, whereby boundary conditions are enforced by the Lagrangian multiplier method, i.e. discrete point 
constraints repeat at bay length intervals, a; (b) array with biaxial (transverse) continuity, enforced by recurrence 
equations, i.e. transverse mode repeats at bay width intervals, b and (c) array with skew-transverse continuity, which 
is as (b) but with phase shift  in the adjacent bay. 

 
Optimized laminate configurations were to be obtained using VICONOPT, incorporating a new sizing strategy 

based on lamination parameter, for comparison with the design spaces of Figs 3 and 4.  However, at the time of 
writing, strength constraints were not incorporated into the sizing strategy and therefore only a limited number of 
optimized results are presented using this strategy, whereby all start designs were based on an 18-ply Fully Isotropic 
Laminate, or FIL, on a rectangular (a/b = 1.15) array of supports, with bay width, b, optimized such that the 
buckling and strength constraint were coincident under pure shear loading.  The Tsai-Wu failure envelope, 
calculated over a broad range of shear and compression load combinations, became the load set against which the 
buckling constraints were to be optimized.  A surrogate set of ply orientations, based on standard ply orientations 
+45, -45, 0 and 90 , were used overcome the constraint that the 18-ply FIL has non-standard ply orientations +60, -
60 and 0 .  The 18-ply FIL is used to generate the laminate stiffness matrix from which the strains are calculated 
from each load combinations.  The ply level stresses are however calculated for the surrogate set of standard ply 
orientations with identical material properties and ply thickness to the 18-ply FIL.  Each load combination was then 
adjusted monotonically until the strength constraint, defined by Eq. (23) was reached.   This surrogate procedure 
was validated against 72-ply /3 and /4 fully isotropic laminates: [60/-602/03/602/0/-60/602/-603/02/60]4T and; [45/-
45/0/90/0/90/-45/90/45/0/45/-45/45/-45/90/-45/0/45/0/90/0/90/45/-45]3T. 

A baseline analysis of the 18-ply FIL laminate with a range of supporting geometries is presented in Fig. 6.  In 
previous work3, plate thickness was adjusted in the isotropic case to maintain constant panel mass, based on the 
relative densities of aluminum and composite laminate materials respectively.  The ratio of buckling load and non-
dimensional buckling factor for the two materials were thus the same, allowing direct comparison between the 
buckling strength/weight ratio of composite and metallic panel array structures.  In the present work, results are 
normalized against the equivalent fully isotropic laminate, hence no material property adjustments are required and 
the comparisons are therefore literally like with like. 

A standard VICONOPT optimization for pure shear loading was performed in which the ply thickness was the 
design variable so that a minimum mass solution, subject to strength constraints could be established, see Table 8.  
Here the rectangular panel, with an applied shear load corresponding to the buckling load and material strength 
constraint of the 18-ply /3 FIL, therefore has a small material strength reserve and the optimization is driven by the 
buckling constraint.  The optimized skew plate result was virtually identical to the rectangular plate result given that 
the buckling reserve could not be exploited without violating the material strength constraint.   
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Table 8 – VICONOPT sizing strategy results for rectangular, hexagonal and skew plate arrays. The common plate 
length, a = 459.85 mm (6.29 in.) and width, b = 139 mm (5.47 in.).  The initial ply thickness, t = 0.1397 mm (0.0055 
in.). 

1. VICONOPT Original Design Optimization, with strength constraints. 
Geometry: Regular Hexagonal Rectangular 30  Skew 
Shear load direction: ve ve ve ve 
Governing constraint: Buckling Buckling Buckling Strength 
t 0.1408 0.1378 0.1647 0.1341 
H = n  t 2.5344 2.4804 2.9646 2.4138 
nEquivalent 18.14 17.76 21.22 17.28 
nRounded 18 18 22 18 

2. VICONOPT Lamination Parameter Optimization, without strength constraints. 
H = n  t 2.53 2.42 2.87 2.18 
nEquivalent 18.09 17.34 20.53 15.59 
nRounded 18 18 20 16 
Target ( 1, 2, 3) (-0.15, -0.09, 0.10) (-0.21, -0.01, -0.11) (0.20, 0.20, 0.00) (-0.01, 0.03, 0.03) 
Target ( 9, 10, 11) (-0.12, -0.21, -0.03) (-0.25, -0.35, -0.01) (-0.18, -0.19, 0.00) (0.03, -0.03, -0.02) 

3. Stacking Sequence Optimization*
Actual ( 1, 2, 3) -0.22, -0.11, 0.11 -0.22, -0.11, 0.00 0.20, 0.20, 0.00 0.00, 0.00, 0.00 
Actual ( 9, 10, 11) -0.14, -0.22, -0.02 -0.27, -0.35, 0.29 -0.18, -0.21, 0.00 0.04, -0.02, -0.02 

4. VICONOPT Final Analysis Check
Buckling load factor 0.985 1.101 0.925 1.034 
(nEquivalent/nRounded)3 0.985 1.119 0.925 1.081 
 
*Final stacking sequences:  
Regular Hexagonal AFB0DF: [45/-45/90/0/-45/90/45/45/90/90/90/45/45/-45/0/45/-45/90]T 
Rectangle    AFB0DF: [-45/45/90/90/45/-45/0/-45/90/90/-45/0/45/-45/90/90/-45/45]T 
Skew(-ve shear)    ASB0DS: [90/-45/45/45/-45/0/0/90/0/0/0/0/90/0/0/45/-45/-45/45/90]T 
Skew( ve shear)   AIB0DF: [45/-45/0/90/90/-45/0/0/45/90/45/-45/45/-45/90/0]T 
 

A VICONOPT lamination parameter optimization was performed as a 2nd step, using the same start designs as 
the 1st step, but omitting the strength constraints;  the 18-ply FIL start design has lamination parameters ( 1, 2, 3) = 
( 9, 10, 11) = (0, 0, 0).  All lamination parameters were free to develop independently, but the final design and 
resulting stacking sequences demonstrate that without material strength constraints the in-plane stiffness properties 
are not modified significantly during the optimization.  Following the stacking sequence optimization10 of the 3rd 
step, a VICONOPT final analysis check showed that any failure to achieve the required critical buckling load was 
due to the rounding of the plate thickness (i.e. from nEquivalent to nRounded plies), rather than a lack of fit to the required 
lamination parameters.  The skew geometry produced a fully uncoupled laminate design solution when subjected to 
pure negative shear load, whereas positive shear produced a quasi-isotropic solution; with bending-twisting 
coupling.  These results suggest that strength constraints must be active in order to assess the likelihood of an 
optimal QHAL solution.  Attention is therefore turned to one of the six groups of 18-ply QHALs from Table 10.   

Figure 7 illustrates the buckling interaction curves and associated Tsai-Wu failure envelopes for the first of the 
six comparator groups in Table 10.  All three laminate designs have identical extensional stiffness properties, see 
Table 12, hence the Tsai-Wu failure envelopes are also identical.  With the exception of bending-twisting coupling 
terms, D16 (= D26), the Pseudo-QHAL comparators, i.e. laminates 26 and 237, are identical to the QHAL, i.e. 
laminate 189.  The influence of bending-twisting coupling on the buckling envelope is therefore clear from the three 
comparators.  The buckling envelopes for the skew and isogrid plate arrays closely match the Tsai-Wu failure 
envelope across a broad range of load combinations.  However, this is not a common feature for other groups in 
Table 10.  Indeed QHALs only have the potential to influence the design where the buckling and material strength 
constraints are coincident.  Where strength constraints are inactive, as in the case of the Rectangular and Regular 
Hexagonal arrays in Fig. 7, the extensional properties have little influence and therefore quasi-homogeneous 
properties have no particular relevance.  An optimum solution therefore relies on the ability to match both buckling 
and material strength constraint envelopes over the range of load combinations of interest. 
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VIII. Concluding Remarks 
Quasi-Homogeneous Anisotropic Laminates or QHALs have been described as having identical anisotropy with 

respect to both extension and bending, providing maximum (and minimum) in-plane and out-of-plane reinforcement 
in the same direction, and thus providing a minimum mass solution.  However, this implies matching buckling and 
strength constraint envelopes.  Where strength constraints are inactive, the extensional properties of the laminate 
have little influence on the design and therefore quasi-homogeneous properties have no particular relevance.  An 
optimum QHAL solution relies on the ability to match both buckling and material strength constraint envelopes over 
the range of load combinations of interest.  However, concomitant extensional and bending stiffness properties are 
not a necessary requirement for achieving this.  
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Appendix 

Table 9 – AFB0DF Quasi-Homogeneous Anisotropic Laminate (QHAL) stacking sequences and associated non-dimensional parameters.  Standard ply orientations 
45, -45, 0 and 90 , are represented in this study in place of symbols , ,  and , respectively. 
 

Ref. Sequence n n  n n  n+ 
QHAL 1 3 3 0 0 27 27 0 0 3.0 0.0 
QHAL 2 4 4 0 0 64 64 0 0 4.0 0.0 
QHAL 3 5 5 0 0 125 125 0 0 5.0 0.0 
QHAL 4 6 6 0 0 216 216 0 0 6.0 0.0 
QHAL 5 7 5 2 0 343 245 98 0 5.0 0.0 
QHAL 6 7 7 0 0 343 343 0 0 5.0 98.0
QHAL 7 7 5 0 2 343 245 0 98 5.0 0.0 
QHAL 8 7 7 0 0 343 343 0 0 7.0 0.0 
QHAL 9 8 4 4 0 512 256 256 0 4.0 0.0 
QHAL 10 8 4 0 4 512 256 0 256 4.0 0.0 
QHAL 11 8 8 0 0 512 512 0 0 8.0 0.0 
QHAL 12 9 9 0 0 729 729 0 0 9.0 0.0 
QHAL 13 10 10 0 0 1000 1000 0 0 10.0 0.0 
QHAL 14 11 7 4 0 1331 847 484 0 7.0 0.0 

 :             :          
QHAL 26 11 11 0 0 1331 1331 0 0 11.0 0.0 
QHAL 27 12 6 6 0 1728 864 864 0 6.0 0.0 
QHAL 28 12 6 0 6 1728 864 0 864 6.0 0.0 
QHAL 29 12 12 0 0 1728 1728 0 0 12.0 0.0 
QHAL 30  13 10 3 0 2197 1690 507 0 10.0 0.0 

 :             :          
QHAL 81  13 13 0 0 2197 2197 0 0 13.0 0.0 
QHAL 82  14 10 4 0 2744 1960 784 0 10.0 0.0 

 :             :          
QHAL 110  14 14 0 0 2744 2744 0 0 14.0 0.0 
QHAL 111    15 12 3 0 3375 2700 675 0 12.0 0.0 

 :             :          
QHAL 158    15 15 0 0 3375 3375 0 0 15.0 0.0 
QHAL 159    16 12 4 0 4096 3072 1024 0 12.0 0.0 

 :             :          
QHAL 205    16 16 0 0 4096 4096 0 0 16.0 0.0 
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QHAL 206      17 14 3 0 4913 4046 867 0 14.0 0.0 
 :             :          

QHAL 414      17 17 0 0 4913 4913 0 0 17.0 0.0 
QHAL 415      18 12 6 0 5832 3888 1944 0 12 0 

 :             :          
QHAL 496      18 18 0 0 5832 5832 0 0 18.0 0.0 
QHAL 497       19 15 4 0 6859 5415 1444 0 15.0 0.0 

 :             :          
QHAL 1094       19 19 0 0 6859 6859 0 0 19.0 0.0 
QHAL 1095       20 14 6 0 8000 5600 2400 0 14.0 0.0 

 :             :          
QHAL 1461       20 20 0 0 8000 8000 0 0 20.0 0.0 
QHAL 1462        21 15 6 0 9261 6615 2646 0 15.0 0.0 

 :             :          
QHAL 1842        21 21 0 0 9261 9261 0 0 21.0 0.0 
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Table 10 – Stacking sequences for 6 groups of QHAL and Pseudo-QHAL comparators.   
 

Group Ref. Stacking sequence 
 26 [ / / / / / / / / / / / / / / / / / ]T 

1 QHAL-189 [ / / / / / / / / / / / / / / / / / ]T 
 237 [ / / / / / / / / / / / / / / / / / ]T 
   
 1752 [ / / / / / / / / / / / / / / / / / ]T 

2 QHAL-2062 [ / / / / / / / / / / / / / / / / / ]T 
 2215 [ / / / / / / / / / / / / / / / / / ]T 
   
 2739 [ / / / / / / / / / / / / / / / / / ]T 

3 2746 [ / / / / / / / / / / / / / / / / / ]T 
 QHAL-2747 [ / / / / / / / / / / / / / / / / / ]T 
   
 2753 [ / / / / / / / / / / / / / / / / / ]T 

4 3149 [ / / / / / / / / / / / / / / / / / ]T 
 QHAL-3150 [ / / / / / / / / / / / / / / / / / ]T 
   
 3165 [ / / / / / / / / / / / / / / / / / ]T 

5 3186 [ / / / / / / / / / / / / / / / / / ]T 
 QHAL-3187 [ / / / / / / / / / / / / / / / / / ]T 
   
 3205 [ / / / / / / / / / / / / / / / / / ]T 

6 3212 [ / / / / / / / / / / / / / / / / / ]T 
 QHAL-3213 [ / / / / / / / / / / / / / / / / / ]T 
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Table 11 – Non-dimensional parameters for 6 groups of QHAL and Pseudo-QHAL comparators corresponding to the stacking sequences listed in Table 10.   
 

Group Ref. n n n n     n+  
 26 18 18 0 0 5832 5832 0 0 6 1728 

1 QHAL-189 18 18 0 0 5832 5832 0 0 6 3888 
 237 18 18 0 0 5832 5832 0 0 6 4608 
  
 1752 18 18 0 0 5832 5832 0 0 12 216 

2 QHAL-2062 18 18 0 0 5832 5832 0 0 12 1944 
 2215 18 18 0 0 5832 5832 0 0 12 3240 
  
 2739 18 6 0 12 5832 1944 0 3888 2 208 

3 2746 18 6 0 12 5832 1944 0 3888 4 728 
 QHAL-2747 18 6 0 12 5832 1944 0 3888 6 0 
  
 2753 18 12 6 0 5832 3888 1944 0 2 2152 

4 3149 18 12 6 0 5832 3888 1944 0 10 1352 
 QHAL-3150 18 12 6 0 5832 3888 1944 0 12 0 
  
 3165 18 6 6 6 5832 1944 1944 1944 2 208 

5 3186 18 6 6 6 5832 1944 1944 1944 4 728 
 QHAL-3187 18 6 6 6 5832 1944 1944 1944 6 0 
  
 3205 18 6 12 0 5832 1944 3888 0 2 208 

6 3212 18 6 12 0 5832 1944 3888 0 4 728
 QHAL-3213 18 6 12 0 5832 1944 3888 0 6 0 
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Table 12 – Stiffness matrices for 6 groups of QHAL and Pseudo-QHAL comparators corresponding to the stacking sequences listed in Table 10. The anisotropic 
elements A16 = A26 and/or D16 = D26 are highlighted only where the comparator differs from the QHAL.   

 
Group [A],[D] matrices Ref. Comments 

 

92,562Sym.
28,170-113,861
28,170-87,709113,861

,
48,774Sym.
14,844-59,997
14,844-46,21759,997

 

26 D16 = D26 = 18,142 
1 QHAL-189 Dij = AijH2/12 

 237 D16 = D26 = -25,839

    
 

92,562Sym.
28,170113,861
28,17087,709113,861

,
48,774Sym.
14,84459,997
14,84446,21759,997

 

1752 D16 = D26 = 41,233
2 QHAL-2062 Dij = AijH2/12 

 2215 D16 = D26 = -4,948 

    

 

39,571Sym.
28,170279,532
28,17034,71854,171

,
20,852Sym.
14,844147,295
14,84418,29428,545

 
2739 A16 = A26 = -9,390; 

D16 = D26 = 11,667 

3 2746 A16 = A26 = 9,390;  
D16 = D26 = 3,726 

 QHAL-2747 Dij = AijH2/12 
    

 

66,067Sym.
56,34084,016
56,34061,213196,696

,
34,813Sym.
29,68844,271
29,68832,255103,646

 
2753 A16 = A26 = -37,560; 

D16 = D26 = -3,176 

4 3149 A16 = A26 = 37,560; 
D16 = D26 = 9,041 

 QHAL-3150 Dij = AijH2/12 
    

 

39,571Sym.
28,170166,851
28,17034,718166,851

,
20,852Sym.
14,84487,920
14,84418,29487,920

 
3165 A16 = A26 = -9,390; 

D16 = D26 = -11,667

5 3186 A16 = A26 = 9,390;  
D16 = D26 = 3,726 

 QHAL-3187 Dij = AijH2/12 
    

 

39,571Sym.
28,17054,171
28,17034,718279,532

,
20,852Sym.
14,84428,545
14,84418,294147,294

 
3205 A16 = A26 = -9,390; 

D16 = D26 = -11,667

6 3212 A16 = A26 = 9,390;  
D16 = D26 = 3,726 

 QHAL-3213 Dij = AijH2/12 
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