1,127 research outputs found
MATE: Masked Autoencoders are Online 3D Test-Time Learners
We propose MATE, the first Test-Time-Training (TTT) method designed for 3D
data. It makes deep networks trained in point cloud classification robust to
distribution shifts occurring in test data, which could not be anticipated
during training. Like existing TTT methods, which focused on classifying 2D
images in the presence of distribution shifts at test-time, MATE also leverages
test data for adaptation. Its test-time objective is that of a Masked
Autoencoder: Each test point cloud has a large portion of its points removed
before it is fed to the network, tasked with reconstructing the full point
cloud. Once the network is updated, it is used to classify the point cloud. We
test MATE on several 3D object classification datasets and show that it
significantly improves robustness of deep networks to several types of
corruptions commonly occurring in 3D point clouds. Further, we show that MATE
is very efficient in terms of the fraction of points it needs for the
adaptation. It can effectively adapt given as few as 5% of tokens of each test
sample, which reduces its memory footprint and makes it lightweight. We also
highlight that MATE achieves competitive performance by adapting sparingly on
the test data, which further reduces its computational overhead, making it
ideal for real-time applications.Comment: Minor fix in citation
Loss of Autophagy Diminishes Pancreatic β Cell Mass and Function with Resultant Hyperglycemia
SummaryAutophagy is a cellular degradation-recycling system for aggregated proteins and damaged organelles. Although dysregulated autophagy is implicated in various diseases including neurodegeneration, its role in pancreatic β cells and glucose homeostasis has not been described. We produced mice with β cell-specific deletion of Atg7 (autophagy-related 7). Atg7 mutant mice showed impaired glucose tolerance and decreased serum insulin level. β cell mass and pancreatic insulin content were reduced because of increased apoptosis and decreased proliferation of β cells. Physiological studies showed reduced basal and glucose-stimulated insulin secretion and impaired glucose-induced cytosolic Ca2+ transients in autophagy-deficient β cells. Morphologic analysis revealed accumulation of ubiquitinated protein aggregates colocalized with p62, which was accompanied by mitochondrial swelling, endoplasmic reticulum distension, and vacuolar changes in β cells. These results suggest that autophagy is necessary to maintain structure, mass and function of pancreatic β cells, and its impairment causes insulin deficiency and hyperglycemia because of abnormal turnover and function of cellular organelles
Ubiquitous Diabetes Management System via Interactive Communication Based on Information Technologies: Clinical Effects and Perspectives
New diabetes management systems based on interactive communication have been introduced recently, accompanying rapid advances in information technology; these systems are referred to as "ubiquitous diabetes management systems." In such ubiquitous systems, patients and medical teams can communicate via Internet or telecommunications, with patients uploading their glucose data and personal information, and medical teams sending optimal feedback. Clinical evidence from both long-term and short-term trials has been reported by some researchers. Such systems appear to be effective not only in reducing the levels of HbA1c but also in stabilizing glucose control. However, most notably, evidence for the cost-effectiveness of such a system should be demonstrated before it can be propagated out to the general population in actual clinical practice. To establish a cost-effective model, various types of clinical decision supporting software designed to reduce the labor time of physicians must first be developed. A number of sensors and devices for monitoring patients' data are expected to be available in the near future; thus, methods for automatic interconnections between devices and web charts were also developed. Further investigations to demonstrate the clinical outcomes of such a system should be conducted, hopefully leading to a new paradigm of diabetes management
Extraarticular Subtalar Arthrodesis for Pes Planovalgus: An Interim Result of 50 Feet in Patients with Spastic Diplegia
BACKGROUND: There are no reports of the pressure changes across the foot after extraarticular subtalar arthrodesis for a planovalgus foot deformity in cerebral palsy. This paper reviews our results of extraarticular subtalar arthrodesis using a cannulated screw and cancellous bone graft.
METHODS: Fifty planovalgus feet in 30 patients with spastic diplegia were included. The mean age at the time of surgery was 9 years, and the mean follow-up period was 3 years. The radiographic, gait, and dynamic foot pressure changes after surgery were investigated.
RESULTS: All patients showed union and no recurrence of the deformity. Correction of the abduction of the forefoot, subluxation of the talonavicular joint, and the hindfoot valgus was confirmed radiographically. However, the calcaneal pitch was not improved significantly after surgery. Peak dorsiflexion of the ankle during the stance phase was increased after surgery, and the peak plantarflexion at push off was decreased. The peak ankle plantar flexion moment and power were also decreased. Postoperative elevation of the medial longitudinal arch was expressed as a decreased relative vertical impulse of the medial midfoot and an increased relative vertical impulse (RVI) of the lateral midfoot. However, the lower than normal RVI of the 1st and 2nd metatarsal head after surgery suggested uncorrected forefoot supination. The anteroposterior and lateral paths of the center of pressure were improved postoperatively.
CONCLUSIONS: Our experience suggests that the index operation reliably corrects the hindfoot valgus in patients with spastic diplegia. Although the operation corrects the plantar flexion of the talus, it does not necessarily correct the plantarflexed calcaneus and forefoot supination. However, these findings are short-term and longer term observations will be needed.ope
Alternative Therapy and Abnormal Liver Function During Adjuvant Chemotherapy in Breast Cancer Patients
Although hepatotoxicity has been rarely reported during adjuvant chemotherapy in breast cancer patients, we observed a high frequency in our patients who were also taking alternative agents. We therefore sought to determine the association between hepatotoxicity and alternative agents during adjuvant chemotherapy in breast cancer patients. All breast cancer patients were treated with the same chemotherapeutic regimen and had normal baseline liver function test (LFT). LFT was checked repeatedly during each cycle of chemotherapy. Patients showing LFT abnormalities were asked about use of alternative agents, and, after the end of chemotherapy, a questionnaire was administered to each patient on their use of alternative agents. Of 178 patients, 65 (36.5%) admitted using alternative therapy, and significantly more patients in this group developed LFT abnormalities (37/65, 56.9%) than those who denied taking alternative therapy (25/113, 22.1%, p=0.001). Although LFT abnormalities were mild to moderate and normalized in most patients after cessation of alternative agents, it remained a serious problem in one patient. In conclusion, alternative therapy may be one of the etiologies for abnormal LFT in breast cancer patients receiving adjuvant chemotherapy
GSTT2 promoter polymorphisms and colorectal cancer risk
BACKGROUND: Glutathione S-transferases are a group of enzymes that participate in detoxification and defense mechanisms against toxic carcinogens and other compounds. These enzymes play an important role in human carcinogenesis. In the present study, we sought to determine whether GSTT2 promoter single nucleotide polymorphisms (SNPs) are associated with colorectal cancer risk. METHODS: A total of 436 colorectal cancer patients and 568 healthy controls were genotyped for three GSTT2 promoter SNPs (-537G>A, -277T>C and -158G>A), using real-time TaqMan assay and direct sequencing. An electrophoretic mobility shift assay (EMSA) was performed to determine the effects of polymorphisms on protein binding to the GSTT2 promoter. RESULTS: The -537A allele (-537G/A or A/A) was significantly associated with colorectal cancer risk (OR = 1.373, p = 0.025), while the -158A allele (-158G/A or A/A) was involved in protection against colorectal cancer (OR = 0.539, p = 0.032). Haplotype 2 (-537A, -277T, -158G) was significantly associated with colorectal cancer risk (OR = 1.386, p = 0.021), while haplotype 4 (-537G, -277C, -158A) protected against colorectal cancer (OR = 0.539, p = 0.032). EMSA data revealed lower promoter binding activity in the -537A allele than its -537G counterpart. CONCLUSION: Our results collectively suggest that SNPs and haplotypes of the GSTT2 promoter region are associated with colorectal cancer risk in the Korean population
- …