721 research outputs found

    Comb-rooted multi-channel synthesis of ultra-narrow optical frequencies of few Hz linewidth

    Full text link
    We report a multi-channel optical frequency synthesizer developed to generate extremely stable continuous wave lasers directly out of the optical comb of an Er-doped fiber oscillator. Being stabilized to a high-finesse cavity with a fractional frequency stability of 3.8×10153.8\times10^{-15} at 0.1 s, the comb-rooted synthesizer produces multiple optical frequencies of ultra-narrow linewidth of 1.0 Hz at 1 s concurrently with an output power of tens of mW per each channel. Diode-based stimulated emission by injection locking is a key mechanism that allows comb frequency modes to sprout up with sufficient power amplification but no loss of original comb frequency stability. Channel frequencies are individually selectable with a 0.1 GHz increment over the entire comb bandwidth spanning 4.25 THz around a 1550 nm center wavelength. A series of out-of-loop test results is discussed to demonstrate that the synthesizer is able to provide stable optical frequencies with the potential for advancing diverse ultra-precision applications such as optical clocks comparison, atomic line spectroscopy, photonic microwaves generation, and coherent optical telecommunications.Comment: 19 pages, 4 figure

    Could Fractional Exhaled Nitric Oxide Test be Useful in Predicting Inhaled Corticosteroid Responsiveness in Chronic Cough? A Systematic Review

    Get PDF
    © 2016 Background Fractional exhaled nitric oxide (FENO) is a safe and convenient test for assessing T H 2 airway inflammation, which is potentially useful in the management of patients with chronic cough. Objective To summarize the current evidence on the diagnostic usefulness of FENO for predicting inhaled corticosteroid (ICS) responsiveness in patients with chronic cough. Methods A systematic literature review was conducted to identify articles published in peer-reviewed journals up to February 2015, without language restriction. We included studies that reported the usefulness of FENO (index test) for predicting ICS responsiveness (reference standard) in patients with chronic cough (target condition). The data were extracted to construct a 2 × 2 accuracy table. Study quality was assessed with Quality Assessment of Diagnostic Accuracy Studies 2. Results We identified 5 original studies (2 prospective and 3 retrospective studies). We identified considerable heterogeneities in study design and outcome definitions, and thus were unable to perform a meta-analysis. The proportion of ICS responders ranged from 44% to 59%. Sensitivity and specificity ranged from 53% to 90%, and from 63% to 97%, respectively. The reported area under the curve ranged from abou t 0.60 to 0.87; however, studies with a prospective design and a lower prevalence of asthma had lower area under the curve values. None measured placebo effects or objective cough frequency. Conclusions We did not find strong evidence to support the use of FENO tests for predicting ICS responsiveness in chronic cough. Further studies need to have a randomized, placebo-controlled design, and should use validated measurement tools for cough. Standardization would facilitate the development of clinical evidence

    Nonaspirin nonsteroidal anti-inflammatory drugs and hemorrhagic stroke risk: the Acute Brain Bleeding Analysis study

    Get PDF
    BACKGROUND AND PURPOSE: The relationship between nonaspirin nonsteroidal anti-inflammatory drugs (NANSAIDs) and hemorrhagic stroke (HS) remains unclear. We examined the risk of HS associated with the use of NANSAIDs in Koreans. METHODS: We performed a nationwide, multicenter case-control study from 2002 to 2004. This study included 940 nontraumatic acute HS cases in patients aged 30 to 84 years, with an absence of a history of stroke or hemorrhage-prone brain lesions, alongside 940 community controls, matched to each case by age and sex. Pretrained interviewers obtained information on prescription drugs as well as over-the-counter drugs taken within 14 days before the onset of stroke. We adjusted potential confounders, including family histories of stroke, histories of hypertension, smoking, alcohol consumption, high salt intake, and laborious work hours. The adjusted ORs and their 95% CIs were calculated by conditional logistic regression. RESULTS: The proportion of NANSAIDs exposure within 14 days was 2.9% for HS patients and 2.0% for the controls. The adjusted odds ratios of stroke in NANSAIDs users compared with nonusers was 1.12 (95% CI, 0.77 to 1.65) for all HS, 1.03 (95% CI, 0.49 to 2.18) for subarachnoid hemorrhage, and 1.19 (95% CI, 0.76 to 1.87) for intracerebral hemorrhage. CONCLUSIONS: No increased risk of HS either subarachnoid hemorrhage or intracerebral hemorrhage was found among NANSAIDs users.This study was partially supported by the Korean Food and Drug Administration

    Aerodynamic Shape Optimization using Overset Mesh Technique for Multiple Body Aircraft Geometries

    Get PDF
    A new design approach for a delicate treatment of complex geometries such as wing/body configuration is arranged using overset mesh technique under large scale computing environment. For the in-depth study of the flow physics and highly accurate design, several special overlapped structured blocks such as collar grid, tip-cap grid, and etc. which are commonly used in refined drag prediction are adopted to consider the applicability of the design code to practical problems. Various pre- and post-processing techniques for overset flow analysis and sensitivity analysis are devised or implemented to adapt overset mesh technique to the design optimization problem based on Gradient Based Optimization Method (GBOM). In the pre-processing, the convergence characteristics of the flow solver and sensitivity analysis are improved by overlap optimization method. Moreover, a new post-processing method, Spline-Boundary Intersecting Grid (S-BIG) scheme, is proposed by considering the ratio of cell area for more refined prediction of aerodynamic coefficients and convenient evaluation of sensitivities under parallel computing environment. For the sensitivity analysis, adjoint formulations for overset boundary conditions are implemented into the fully hand-differentiated sensitivity analysis code. A smooth geometric modification on the overlapped surface boundaries and evaluation of grid sensitivities can be performed by mapping from planform coordinate to the surface meshes with Hicks-Henne function. Careful design works for the drag minimization problem of a transonic wing and a wing/body configuration are performed using the newly-developed and -applied overset mesh techniques. And the design results from conventional design problem demonstrate the capability of the present design approach successfully.The authors appreciate financial support by the Brain Korea-21 Project for the Mechanical and Aerospace Engineering Research at Seoul National University and by the Korea Science and Engineering Foundation (Grant R01-2005-000-10059-0)

    Primary Medullary Hemorrhage Associated with Hypertension

    Get PDF
    Spontaneous primary medullary hemorrhage is a rare event. A 64-year-old man was admitted for sudden-onset vertigo and vomiting. His clinical features were similar to those of lateral medullary syndrome. The patient had no anticoagulant therapy, vascular malformation, or a caudal extension of a pontine hemorrhage. The patient had multiple hypertensive changes, including retinopathy, left ventricular hypertrophy on electrocardiography, multiple cerebral microbleeds, and small-vessel changes on MRI. T2*-weighted gradient echo MRI performed 3 months prior to admission and contrast-enhanced MRI showed no evidence of vascular malformation. We concluded that the patient had uncontrolled hypertension that may have lead to primary medullary hemorrhage

    Morphology Transformation of Foldamer Assemblies Triggered by Single Oxygen Atom on Critical Residue Switch

    Get PDF
    The synthesis of morphologically well-defined peptidic materials via self-assembly is challenging but demanding for biocompatible functional materials. Moreover, switching morphology from a given shape to other predictable forms by molecular modification of the identical building block is an even more complicated subject because the self-assembly of flexible peptides is prone to diverge upon subtle structural change. To accomplish controllable morphology transformation, systematic self-assembly studies are performed using congener short β-peptide foldamers to find a minimal structural change that alters the self-assembled morphology. Introduction of oxygen-containing β-amino acid (ATFC) for subtle electronic perturbation on hydrophobic foldamer induces a previously inaccessible solid-state conformational split to generate the most susceptible modification site for morphology transformation of the foldamer assemblies. The site-dependent morphological switching power of ATFC is further demonstrated by dual substitution experiments and proven by crystallographic analyses. Stepwise morphology transformation is shown by modifying an identical foldamer scaffold. This study will guide in designing peptidic molecules from scratch to create complex and biofunctional assemblies with nonspherical shapes

    The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2)

    Get PDF
    Individual Streptomyces species have the genetic potential to produce a diverse array of natural products of commercial, medical and veterinary interest. However, these products are often not detectable under laboratory culture conditions. To harness their full biosynthetic potential, it is important to develop a detailed understanding of the regulatory networks that orchestrate their metabolism. Here we integrate nucleotide resolution genome-scale measurements of the transcriptome and translatome of Streptomyces coelicolor, the model antibiotic-producing actinomycete. Our systematic study determines 3,570 transcription start sites and identifies 230 small RNAs and a considerable proportion (∼21%) of leaderless mRNAs; this enables deduction of genome-wide promoter architecture. Ribosome profiling reveals that the translation efficiency of secondary metabolic genes is negatively correlated with transcription and that several key antibiotic regulatory genes are translationally induced at transition growth phase. These findings might facilitate the design of new approaches to antibiotic discovery and development

    Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke

    Get PDF
    Exosomes and extracellular nanovesicles (NV) derived from mesenchymal stem cells (MSC) may be used for the treatment of ischemic stroke owing to their multifaceted therapeutic benefits that include the induction of angiogenesis, anti-apoptosis, and anti-inflammation. However, the most serious drawback of using exosomes and NV for ischemic stroke is the poor targeting on the ischemic lesion of brain after systemic administration, thereby yielding a poor therapeutic outcome. In this study, we show that magnetic NV (MNV) derived from iron oxide nanoparticles (IONP)-harboring MSC can drastically improve the ischemic-lesion targeting and the therapeutic outcome. Because IONP stimulated expressions of therapeutic growth factors in the MSC, MNV contained greater amounts of those therapeutic molecules compared to NV derived from naive MSC. Following the systemic injection of MNV into transient middle-cerebral-artery-occlusion (MCAO)-induced rats, the magnetic navigation increased the MNV localization to the ischemic lesion by 5.1 times. The MNV injection and subsequent magnetic navigation promoted the anti-inflammatory response, angiogenesis, and anti-apoptosis in the ischemic brain lesion, thereby yielding a considerably decreased infarction volume and improved motor function. Overall, the proposed MNV approach may overcome the major drawback of the conventional MSC-exosome therapy or NV therapy for the treatment of ischemic stroke.

    Perspective of mesenchymal transformation in glioblastoma.

    Get PDF
    Despite aggressive multimodal treatment, glioblastoma (GBM), a grade IV primary brain tumor, still portends a poor prognosis with a median overall survival of 12-16 months. The complexity of GBM treatment mainly lies in the inter- and intra-tumoral heterogeneity, which largely contributes to the treatment-refractory and recurrent nature of GBM. By paving the road towards the development of personalized medicine for GBM patients, the cancer genome atlas classification scheme of GBM into distinct transcriptional subtypes has been considered an invaluable approach to overcoming this heterogeneity. Among the identified transcriptional subtypes, the mesenchymal subtype has been found associated with more aggressive, invasive, angiogenic, hypoxic, necrotic, inflammatory, and multitherapy-resistant features than other transcriptional subtypes. Accordingly, mesenchymal GBM patients were found to exhibit worse prognosis than other subtypes when patients with high transcriptional heterogeneity were excluded. Furthermore, identification of the master mesenchymal regulators and their downstream signaling pathways has not only increased our understanding of the complex regulatory transcriptional networks of mesenchymal GBM, but also has generated a list of potent inhibitors for clinical trials. Importantly, the mesenchymal transition of GBM has been found to be tightly associated with treatment-induced phenotypic changes in recurrence. Together, these findings indicate that elucidating the governing and plastic transcriptomic natures of mesenchymal GBM is critical in order to develop novel and selective therapeutic strategies that can improve both patient care and clinical outcomes. Thus, the focus of our review will be on the recent advances in the understanding of the transcriptome of mesenchymal GBM and discuss microenvironmental, metabolic, and treatment-related factors as critical components through which the mesenchymal signature may be acquired. We also take into consideration the transcriptomic plasticity of GBM to discuss the future perspectives in employing selective therapeutic strategies against mesenchymal GBM
    corecore