
The Jackson Laboratory The Jackson Laboratory 

The Mouseion at the JAXlibrary The Mouseion at the JAXlibrary 

Faculty Research 2021 Faculty Research 

3-24-2021 

Perspective of mesenchymal transformation in glioblastoma. Perspective of mesenchymal transformation in glioblastoma. 

Yona Kim 

Frederick S Varn 

Sung-Hye Park 

Byung Woo Yoon 

Hye Ran Park 

See next page for additional authors 

Follow this and additional works at: https://mouseion.jax.org/stfb2021 

 Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons 

https://mouseion.jax.org/
https://mouseion.jax.org/stfb2021
https://mouseion.jax.org/fac_research
https://mouseion.jax.org/stfb2021?utm_source=mouseion.jax.org%2Fstfb2021%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=mouseion.jax.org%2Fstfb2021%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=mouseion.jax.org%2Fstfb2021%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Yona Kim, Frederick S Varn, Sung-Hye Park, Byung Woo Yoon, Hye Ran Park, Charles Lee, Roel G W 
Verhaak, and Sun Ha Paek 



Kim et al. acta neuropathol commun            (2021) 9:50  
https://doi.org/10.1186/s40478-021-01151-4

REVIEW

Perspective of mesenchymal transformation 
in glioblastoma
Yona Kim1, Frederick S. Varn2, Sung‑Hye Park4, Byung Woo Yoon5, Hye Ran Park6, Charles Lee2, 
Roel G. W. Verhaak2,3*† and Sun Ha Paek1*†   

Abstract 

Despite aggressive multimodal treatment, glioblastoma (GBM), a grade IV primary brain tumor, still portends a poor 
prognosis with a median overall survival of 12–16 months. The complexity of GBM treatment mainly lies in the inter- 
and intra-tumoral heterogeneity, which largely contributes to the treatment-refractory and recurrent nature of GBM. 
By paving the road towards the development of personalized medicine for GBM patients, the cancer genome atlas 
classification scheme of GBM into distinct transcriptional subtypes has been considered an invaluable approach to 
overcoming this heterogeneity. Among the identified transcriptional subtypes, the mesenchymal subtype has been 
found associated with more aggressive, invasive, angiogenic, hypoxic, necrotic, inflammatory, and multitherapy-
resistant features than other transcriptional subtypes. Accordingly, mesenchymal GBM patients were found to exhibit 
worse prognosis than other subtypes when patients with high transcriptional heterogeneity were excluded. Further‑
more, identification of the master mesenchymal regulators and their downstream signaling pathways has not only 
increased our understanding of the complex regulatory transcriptional networks of mesenchymal GBM, but also has 
generated a list of potent inhibitors for clinical trials. Importantly, the mesenchymal transition of GBM has been found 
to be tightly associated with treatment-induced phenotypic changes in recurrence. Together, these findings indicate 
that elucidating the governing and plastic transcriptomic natures of mesenchymal GBM is critical in order to develop 
novel and selective therapeutic strategies that can improve both patient care and clinical outcomes. Thus, the focus 
of our review will be on the recent advances in the understanding of the transcriptome of mesenchymal GBM and 
discuss microenvironmental, metabolic, and treatment-related factors as critical components through which the mes‑
enchymal signature may be acquired. We also take into consideration the transcriptomic plasticity of GBM to discuss 
the future perspectives in employing selective therapeutic strategies against mesenchymal GBM.
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Introduction
Glioblastoma (GBM) is the most aggressive and infiltra-
tive primary brain tumor in adults. The current standard 
treatment regimen for patients with newly diagnosed 
GBM was established in 2005, and consists of maximal 
safe surgical resection followed by concurrent chemo-
radiation with temozolomide (TMZ), an FDA-approved 
alkylating agent [145]. Despite this treatment, the 5-year 
recurrence rate of GBM after initial treatment is as high 
as 90% [5, 163]. Managing recurrent GBMs is a challeng-
ing problem because subsequent treatment options are 
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limited and recurrent tumors often manifest in a more 
aggressive and infiltrative pattern. Thus, the development 
of effective and new treatment modalities for both newly 
diagnosed and recurrent GBMs is of exceptional impor-
tance [145].

Particularly, in response to growing interest of the per-
sonalized medicine for cancer patients, there have been 
many studies that divided and characterized the molec-
ular background of GBM based on its clinical, genomic, 
transcriptomic, epigenomic and proteomic features. An 
attempt to transcriptionally categorize GBM tumors 
was made by Phillips et  al. who identified and charac-
terized three signatures of GBM, known as the prolif-
erative, proneural, and mesenchymal signatures, based 
on gene expression profiling and subsequent longitu-
dinal analysis of glioma cases [114]. In 2010, a group of 
researchers from TCGA built upon this work to identify 
four transcriptomic subtypes of GBM—proneural, neu-
ral, classical and mesenchymal—based on unsupervised 
transcriptomic analysis of 202 newly diagnosed GBM 
cases, which showed strong associations with genomic 
alterations of genes such as TP53, EGFR and NF1 [155]. 
At this point, GBM tumors harboring the mesenchy-
mal signature have gained much attention due to their 
highly aggressive natures compared to those with other 
transcriptomic signatures [10, 35, 89, 181, 186]. Notably, 
mesenchymal GBM was found to be characterized by 
an increased presence of immune cells, as compared to 
other transcriptional subtypes [62], questioning whether 
mesenchymal transcriptional signature is intrinsically 
captured in GBM cells or a byproduct of bulk RNA-
sequencing being contaminated by non-neoplastic cells. 
Wang et al. through tumor cell-intrinsic gene expression 
analysis, have revealed that the TCGA-derived IDH wild-
type GBM transcriptomic signatures can be reduced to 
the proneural, classical and mesenchymal subtypes, with 
the neural subtype representing normal cell contamina-
tion [161]. Furthermore, other studies using single-cell 
RNA-sequencing have revealed that some glioma cells 
themselves exhibit mesenchymal signature, suggesting 
that this signature is far from being simply tissue artifact 
[26, 177].

Although mesenchymal GBM was initially consid-
ered as the most aggressive transcriptomic signature 
in GBM [16], the significant survival difference was 
observed only when restricting the samples with low 
transcriptional heterogeneity, questioning the stud-
ies on the transcriptional subtypes of GBM performed 
without considering transcriptional heterogeneity 
[161]. However, the wealth of studies performed on 
so-called “mesenchymal” phenotypes described in the 
present review and also other reviews collectively sug-
gest that mesenchymal GBM exhibits relatively more 

aggressive characteristics compared to other transcrip-
tional signatures [4, 9, 38]. Other classification systems 
of GBM have also been reported based on other param-
eters (e.g., DNA methylation patterns) and shown to 
correlate with patient prognosis and also transcrip-
tomic signatures [66, 81, 185]. Although these classifi-
cation systems may be more robust, we will not further 
discuss here as the focus of the present review is on 
the mesenchymal signature of GBM identified through 
transcriptomic analysis.

Generally, two types of mesenchymal GBM have been 
described: microenvironment-driven and microenvi-
ronment-independent mesenchymal GBM [100, 161]. 
Non-neoplastic cells of microenvironmental compo-
nents, especially brain-resident microglia and infiltrated 
monocyte-derived macrophages, have been shown 
closely associated with the development of mesenchymal 
GBM [11, 35, 48, 130, 131]. Bhat et al. reported that the 
mesenchymal signature is lost in patient-derived glioma 
sphere cultures and xenograft models despite originating 
from mesenchymal tumors, suggesting the necessity of 
human tumor microenvironmental factors in acquiring 
and maintaining the mesenchymal phenotypic state of 
GBMs [11]. Furthermore, the global and regulatory tran-
scriptional profile of tumor-associated macrophages that 
drive mesenchymal phenotype in GBM has recently been 
identified, further highlighting the association between 
microenvironmental components and mesenchymal 
GBM [131]. On the other hand, mesenchymal trans-
formation has also been reported to occur in a glioma 
cell-intrinsic manner [11, 47]. It was shown that the mes-
enchymal phenotype of initiating GBM was maintained 
in derived sphere cultures and also as xenograft models, 
indicating that some glioma cells are capable of sustain-
ing the mesenchymal state independently of their micro-
environment [11]. Moreover, it was reported that tumor 
bulk cells themselves may undergo a subtype transition 
to mesenchymal signature under a selective pressure of 
treatment, and this phenomenon was not associated 
with stromal enrichment via a high rate of cell death in 
the tumor bulk [47]. Whether microenvironment-driven 
or -independent, the acquisition of mesenchymal signa-
ture poses a significant clinical challenge as it exempli-
fies the plasticity of GBM and underlies the real problem 
of treatment resistance [10, 11, 24, 93, 116]. Therefore, 
understanding the impact of cell-intrinsic and -extrinsic 
cues on the intratumoral variability in GBM is critical to 
develop and optimize the multimodal therapeutic strate-
gies for GBM patients. In this review, we will discuss the 
current molecular pathobiology in mesenchymal trans-
formation in GBM, while focusing on the dynamics and 
molecular factors associated with the mesenchymal tran-
scriptional state and also their clinical implications.
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Clinical challenges of mesenchymal glioblastoma
The development of mesenchymal GBM has been found 
tightly associated with that of resistance to therapeu-
tic agents widely applied and clinically tried for GBM 
patients [11, 77, 115, 133, 135]. The relationship between 
the mesenchymal signature of GBM and radiotherapy, 
which is a part of the current standard-of-care for GBM 
treatment, has intensively been studied [11, 47]. Bhat 
et al. demonstrated a mechanistic link between radiation 
resistance and mesenchymal GBM, presenting evidence 
of therapeutic risk of ionizing radiation for GBM patients. 
In this study, they proposed a metagene score of the mes-
enchymal signature, which consists of proteins such as 
YKL40, SERPINE1, TIMP1 and TGFBI, and showed that 
GBM patients with higher mesenchymal metagene score 
are associated with poor response to radiation regard-
less of IDH1/2 mutational status [11]. Additionally, Hol-
liday et al. utilized a genetically engineered mouse model 
of proneural glioma and revealed that the mesenchymal 
transition of tumor occurred within 6 h upon radiation, 
suggesting an intrinsic ability of GBM cells to cope with 
the therapeutic stress [47]. Moreover, radiation-associ-
ated mesenchymal differentiation in GBM was found to 
contribute to resistance to the alkylating agent TMZ as 
well [70].

It is now evident that tumor-associated macrophages 
and microglia (TAMs), which account for as many as 
30–50% of the cell populations in the GBM microenvi-
ronment, are the critical stromal elements whose bidirec-
tional communications with glioma cells are associated 
with the aggressiveness of GBM tumor as well as resist-
ance to standard therapies [48, 79]. Recently, Akkari 
et  al. who analyzed the phenotypic heterogeneity and 
plasticity of distinct TAM populations in the irradiated 
GBM microenvironment, have shown that the number 
of TAMs is progressively accumulated throughout the 
course of the 5-day fractionated radiotherapy regimen 
in GBM preclinical mouse models [2]. This observation 
is further supported by the findings of Doan et  al. who 
showed that the global mRNA expression changes follow-
ing irradiation are associated with a positive regulation of 
macrophage chemotaxis [31]. These results suggest that 
radiotherapy may elicit the recruitment of TAMs, which 
have also been reported to induce mesenchymal differ-
entiation in GBM cells followed by radioresistance [11, 
153].

Furthermore, resistance to antiangiogenic ther-
apy, such as bevacizumab, which is a recombinant 
human monoclonal antibody acting against the vascu-
lar endothelial growth factor (VEGF), has been found 
closely linked to the mesenchymal phenotype of GBM 
[115]. Sandmann et  al. in their retrospective analysis of 
the AVAglio (Avastin in Glioblastoma) Trial, found that 

only IDH1 wild-type GBM patients with proneural sub-
type derived both overall and progression-free survival 
benefit compared to placebo group [133]. Although GBM 
patients with mesenchymal subtype experienced longer 
progression-free survival upon bevacizumab treatment 
than placebo, their overall survival was not increased, 
supporting the notion that tumor progression features 
visible through intra-patient imaging suppressed by anti-
VEGF treatment are most readily present in mesenchy-
mal GBM.

Aforementioned remarks of mesenchymal GBM pre-
sent a critical issue of the potential therapeutic risk 
of both current standard-of-care and novel treatment 
modalities. However, in order for mesenchymal transi-
tion to be established as a key target for GBM adjuvant 
therapy, additional studies are required to understand the 
transcriptome-wide architecture of intratumoral variabil-
ity in GBM.

The transcriptome of mesenchymal glioblastoma
Our understanding of the transcriptional heterogene-
ity was extended from intertumoral to intratumoral level 
when GBM tumors were analyzed at multiple spatial 
scales and also at single-cell level. Sottoriva et al. by ana-
lyzing spatially distinct GBM fragments, demonstrated 
that different transcriptomic subtypes are displayed 
within the same tumor [142]. Also, Patel et  al. showed 
that established GBM transcriptional subtype classifi-
ers are variably expressed across individual cells within 
a tumor. These studies demonstrate that multiple tran-
scriptomic signatures associated with cellular states coex-
ist within a GBM tumor, suggesting that the expression 
profile of bulk tumors represents the average of highly 
heterogeneous transcriptional state admixtures of GBM 
cells [108]. Indeed, intratumoral heterogeneity suggests 
a critical concern for GBM treatment, as the collapse of 
tumor cells with a certain phenotype may result in the 
initiation and proliferation of tumor cells with other phe-
notypes, which may lead to mesenchymal transforma-
tion in GBM. Therefore, understanding the intratumoral 
transcriptional heterogeneity and how it may affect the 
course of GBM progression towards the mesenchymal 
signature is critical.

Many studies have reported the cellular and pheno-
typic plasticity of GBM transcriptome not only as the 
main driver of intratumoral heterogeneity, but also a 
characteristic phenomenon during tumor evolution-
ary dynamics [158, 161]. In particular, the significance 
of transcriptomic subtype transitions between diagnosis 
and recurrence and in response to radio/chemotherapy 
has increasingly been recognized due to their contribu-
tion to the development of mesenchymal-related charac-
teristics [38, 98, 104, 114, 135]. In the following sections, 
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we will highlight some of the important findings regard-
ing the transcriptome of mesenchymal GBM in relation 
to its transcriptional network, master transcriptional reg-
ulators, and the signaling pathways and factors that are 
hijacked by GBM to acquire the mesenchymal phenotype.

The transcriptional network of mesenchymal glioblastoma
In response to increasing knowledge of the molecular 
characteristics of GBM, Carro et al. have drawn the first 
comprehensive map of the transcriptional network of 
mesenchymal signature of GBM through reverse-engi-
neering and an unbiased microarray technique [16]. In 
this work, the authors utilized context-specific regula-
tory network models and identified mesenchymal gene 
expression signature, which generally consisted of several 
transcriptional factors and their regulons. Importantly, 
the transcriptional network of mesenchymal GBM was 
found to be closely intertwined with Nuclear Factor-κB 
(NF-κB) signaling pathway [11, 169]. NF-κB is a ubiqui-
tous transcription factor known to play a crucial role in 
aggressive mesenchymal differentiation in virtually all 
types of malignancies, including GBM [72, 148]. Gener-
ally, NF-κB is activated by a variety of both cell-extrinsic 
(e.g., microenvironmental factors) and -intrinsic (e.g., 
genomic aberrations) factors and subsequently conducts 
an orchestra of transcription factors and co-regulating 
partners, such as STAT3 and HIF-1α, to potentiate mes-
enchymal program [37, 59]. In particular, NF-κB has been 
shown to directly induce the expression of mesenchymal 
proteins (e.g., CD44, N-cadherin, Vimentin) and regulate 
the expression of key molecules that promote inflamma-
tory microenvironment (e.g., TNFα, CCL2, IL-6) [28, 32, 
90].

One of the crucial findings from analyzing the tran-
scriptional network of mesenchymal GBM is the iden-
tification of master transcriptional regulators, which 
are critical in inducing and sustaining the mesenchy-
mal properties of GBM [9]. The molecular and clinical 
aspects of these master transcriptional regulators are dis-
cussed next.

Master transcriptional regulators of mesenchymal 
glioblastoma
Cancer-associated master transcriptional regulators are 
proteins that govern and regulate transcriptional cellular 
state of tumor and may thus be associated with potential 
therapeutic vulnerabilities [139]. In many types of can-
cer, it has been shown that genetically and/or pharmaco-
logically inhibiting a master transcriptional regulator and 
its downstream signaling pathways may be a promising 
therapeutic strategy [3, 12, 117, 124, 128]. An attempt 
to identify master regulators of mesenchymal GBM was 
first initiated by Carro et  al. who suggested STAT3 and 

C/EBPb as synergistic master transcriptional regula-
tors for mesenchymal GBM [16]. Their co-expression 
was associated with reprogramming of neural stem cells 
into an aberrant mesenchymal lineage, while their down-
regulation resulted in the collapse of the mesenchy-
mal signature and reduced aggressiveness of the tumor. 
Interestingly, the concurrent and synergistic activity of 
STAT3 and C/EBPb as master mesenchymal regulators 
seemed to oppose their normal biological roles—astro-
cytic differentiation and neurogenesis, respectively—in 
the developing nervous system [99, 105]. The authors 
hypothesized that GBM cells have an ability to tolerate 
such an “abnormal” situation by activating downstream 
signaling pathways leading to an aberrant mesenchymal 
transformation. In addition, although sitting at a less 
hierarchical position in the regulatory network of the 
mesenchymal transcriptome than STAT3 and C/EBPb, 
FOSL2 and RUNX1 were also identified as potential mas-
ter regulators for mesenchymal transformation in GBM 
[16]. Interestingly, epigenetic changes on the promoter-
associated methylation sites of these two master regu-
lators were found to be associated with mesenchymal 
transition accompanied by multitherapy resistance [135].

Another master regulator was found to be transcrip-
tional coactivator with PDZ-binding motif (TAZ), whose 
up-regulation triggered the expression of mesenchymal-
related proteins and aberrant osteoblastic and chondro-
cytic differentiation in proneural glioma stem cells in 
a transcriptional enhanced associate domain (TEAD)-
dependent fashion. Interestingly, inferred downstream 
targets of TAZ largely did not overlap with those of 
STAT3 and C/EBPb. Such result suggests that TAZ may 
be an independent modulator of the mesenchymal signa-
ture and that multiple routes leading to the mesenchymal 
phenotype in GBM exist [10]. More recently, hyperacti-
vation of TAZ was found to be associated with mesen-
chymal transition and tumor necrosis in GBM [173]. Of 
note, TAZ, and its paralog Yes-associated protein (YAP), 
participate as downstream transcription coactivators in 
the Hippo signaling pathway, which is an evolutionarily 
conserved regulator of tissue growth [50]. Dysregula-
tion of the pathway has been reported to be associated 
with cancer development and chemoresistance in vari-
ety types of cancer, including GBM [15, 180]. As recently 
reviewed by Masliantsev et  al. activating large tumor 
suppressor kinase 1/2 (LATS1/2)-dependent inhibitory 
signals that phosphorylate TAZ/YAP and directly dis-
rupting TAZ/YAP-TEAD-mediated transcription may 
be effective therapeutic approaches to target the Hippo 
pathway [88]. The therapeutic potential of the benzopor-
phyrin derivative verteporfin, an inhibitor of TAZ/YAP-
TEAD complex, was recently examined and it was shown 
that verteporfin suppressed expression of TAZ/YAP 
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transcriptional targets and induced apoptosis of EGFR-
amplified/mutant GBM cells [156]. As EGFR amplifica-
tion is a prominent characteristic in classical subtype 
of GBM [155], it would be relevant to examine the effi-
cacy of verteporfin in inhibiting mesenchymal transi-
tion in GBM by targeting TAZ. Moreover, it was found 
that NF-κB controls the expression of these three master 
transcription factors to potentiate mesenchymal differen-
tiation in proneural glioma sphere cultures, which subse-
quently exhibit an enrichment of CD44+ subpopulations 
and radioresistant phenotypes [11, 169].

Furthermore, the interplay between microenviron-
mental factors and the activity of master transcriptional 
regulators has been implicated. Generally, necrosis and 
hypoxia are considered as crucial pathobiological fea-
tures of the neoplastic microenvironment [49]. Interest-
ingly, it has been observed that the expression of master 
mesenchymal regulators, especially C/EBPb and STAT3, 
is significantly associated with the development of 
necrotic and hypoxic microenvironment of GBM [9, 25]. 
As mentioned previously, macrophages and microglia 
are the integral components of the tumor microenviron-
ment, creating a supportive stroma for GBM cell expan-
sion and invasion [119]. Although commonly referred 
to as “TAMs” as a collective term, these are indeed two 
separate cellular entities with different ontogeny [48], 
and their ratio has recently been demonstrated to vary 
depending on the stage of GBM progression [2]. Interest-
ingly, each of these cellular entities has been reported to 
modulate the activity of the master transcriptional regu-
lator, especially STAT3, suggesting that they have differ-
ential, and yet, common roles in promoting mesenchymal 
transition in GBM. Dumas et  al. reported that mTOR-
dependent regulation of STAT3 and NF-kB activity in 
microglia were induced by GBM-initiating cells, which 
subsequently promote an immunosuppressive micro-
glial phenotype, and that such mTOR activity is most 
significantly correlated with tumor-associated microglia 
signatures in the mesenchymal subgroup of GBM [33]. 
Moreover, the interaction between GBM-released factors 
and monocytes, which are the precursor to macrophages, 
has also been identified to contribute to the immunosup-
pressive microenvironment of mesenchymal GBM [32]. 
It has been shown that monocytes preferentially take up 
GBM-derived exosomes, which traverse the monocyte 
cytoplasm and mainly release STAT3, thereby triggering 
up-regulation of programmed death ligand 1 and skew-
ing monocytes toward the immune suppressive M2 phe-
notype [40].

It is important to note that not all mesenchymal GBMs 
are regulated by these identified master transcriptional 
regulators, implying that there are still undiscovered 
master regulators that may regulate the mesenchymal 

properties of GBMs working synergistically or even inde-
pendently of the previously identified master regulators. 
Intriguingly, studies on the master regulators of mes-
enchymal GBM raise a critical question as to whether 
these regulators are the master transcription factors of 
the mesenchymal state of glioma cells or those of the 
tumor microenvironmental components or those of both. 
Nonetheless, identification of additional novel master 
regulators may provide a clue as to how to evade mes-
enchymal differentiation-associated therapeutic risk and 
subsequently aid in the development of effective thera-
peutic intervention against high-grade glioma.

Transcriptomic plasticity
It is now a well-established notion that GBM is a dynamic 
neoplasm whose transcriptome is capable of undergoing 
transition in response to selective pressure in different 
biological and pathophysiological settings. Such plasticity 
accounts for not only a high degree of inter- and intra-
tumoral transcriptional heterogeneity, but also a birth of 
multitherapy resistant clones upon recurrence and/or in 
response to treatments.

It has been reported that proneural GBMs may acquire 
therapeutic resistance and more aggressive, angiogenic 
and hypoxic potential by shifting their transcriptomic 
and phenotypic signatures toward mesenchymal GBMs 
[11, 38, 91]. Such transcriptomic plasticity of GBM 
upon treatment and/or recurrence is often referred to 
as a “proneural-to-mesenchymal transition”, or PMT [9]. 
This phenomenon is generally described analogous to 
epithelial-to-mesenchymal transition (EMT), which is 
one of the dominant features driving invasiveness and 
metastasis in carcinomas [144]. An increasing amount 
of evidence has demonstrated the existence of PMT and 
suggested that first-line therapy for primary disease may 
not effectively work for recurrent tumor due to this pro-
cess [45, 47, 70]. However, recurrent GBMs, especially 
those that have undergone mesenchymal transformation, 
have been reported to be associated with an increased 
presence of TAMs overall [79, 161], raising an issue men-
tioned earlier regarding bulk RNA sequencing. Moreo-
ver, although PMT was initially described as a “frequent” 
event and post-therapeutic characteristic of GBM [114, 
166], a longitudinal transcriptome analysis performed 
by Wang et  al. showed that 55% of tumors from IDH-
wildtype GBM patients retained their original transcrip-
tional subtype at recurrence and also that the frequency 
of PMT was not significantly higher than that of other 
subtype transitions [161].

However, consistent observations that GBM tumors 
that have undergone mesenchymal transformation are 
associated with increased aggressiveness and multith-
erapy resistance highlight the importance of investigating 
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the underlying mechanisms and associated therapeutic 
targets [161, 166]. Generally, molecular features, intra-
tumoral heterogeneity, immunogenicity, microenvi-
ronmental factors, and treatments have been reported 
to shift GBM transcriptome towards the mesenchymal 
signature. In the following sections, some of the main 
mechanisms and factors exploited by GBM to acquire the 
mesenchymal phenotype are discussed.

Microenvironmental factors
The extensive heterogeneous milieu of GBM tumors is 
characterized not only by several distinctive cellular enti-
ties, but also by the presence of multiple subclonal popu-
lations of GBM cells harboring different cellular states in 
the same tumor [100]. Importantly, dynamics associated 
with phenotypic heterogeneity have been reported to be 
instructed by the tumor microenvironment in a nonhier-
archical and reversible manner [30]. Such immense het-
erogeneity and plasticity of GBM is now considered as a 

major contributing factor for overcoming selective pres-
sures both during tumor progression and adaptation to 
therapeutic stresses. The coexistence of subpopulation of 
GBM cells of multiple transcriptional states and also that 
of different types of cells in the tumor microenvironment 
are depicted in Fig. 1 with an emphasis on their roles on 
promoting the mesenchymal signature.

Transcriptomic plasticity of GBM is significantly influ-
enced by cellular heterogeneity in the tumor microenvi-
ronment [113, 134]. The continuous crosstalk between 
tumoral and non-tumoral cells is basically viewed as 
responsible for nearly all events that facilitate the self-
sustained growth and invasion of neoplastic cells and 
therapy-resistance [159, 183]. An intimate link between 
the expression of a variety of immune-related genes and 
mesenchymal GBM reported in many studies has sug-
gested that immunological and inflammatory processes 
may foster the establishment of the mesenchymal signa-
ture [11, 32, 130]. Accordingly, it has been found that the 

Fig. 1  The impact of microenvironmental factors on shaping GBM transcriptome. Mesenchymal transition may be induced by a variety of 
microenvironmental factors such as a interaction between GBM cells and tumor-associated macrophages/microglia b proinflammatory processes 
induced by radiation c hypoxia and d astrocytes. As depicted in the figure, GBM is a highly heterogeneous tumor consisting of several cellular 
entities, such as fibroblasts, immune cells, and astrocytes and also of GBM cells harboring different transcriptomic signatures. For the representation 
of GBM cells with the distinctive transcriptomic states, only mesenchymal and proneural cells are portrayed
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mesenchymal phenotype can be shaped by a variety of 
infiltrative immune cells [32, 178]. TAMs, being the larg-
est stromal population in GBM, are generally described 
as integral microenvironmental components contribut-
ing to mesenchymal transition by expressing pro- (M1) 
(e.g., TNFα) and anti-inflammatory (M2) (e.g., TGFβ), 
pro-angiogenic (e.g., VEGF), and extracellular matrix 
remodeling factors (e.g., MMP9) (Fig.  1a) [11, 35, 119]. 
Also, TAMs have been shown to release a family of 
cytokines, which may mediate mesenchymal differen-
tiation in an NF-κB-dependent manner. Likewise, many 
studies reported that mesenchymal GBM exhibits a high 
degree of macrophages/microglia infiltration and also 
necrosis compared to other transcriptional subclasses 
[25, 114, 155].

Heterogeneous transcriptional state of GBM cells in 
the tumor microenvironment can also be explained in 
the context of anatomical heterogeneity, which con-
sists of various histological features [121]. Puchalski 
et al. utilized laser microdissection to isolate RNA from 
these regions and demonstrated that many of the critical 
mesenchymal-related signatures (e.g., HIF-1α network, 
TNFα signaling pathway, cell migration, and immune 
response) are enriched in perinecrotic/pseudopalisading 
zones. Similarly, necrosis was found to impact the tran-
scriptional class of GBM in a way that non-mesenchymal 
signatures became more molecularly similar to the mes-
enchymal class with increasing levels of necrosis [11, 25]. 
However, more single-cell-based research is needed to 
determine whether glioma cells in perinecrotic/pseudo-
palisading areas intrinsically exhibit mesenchymal sig-
nature as these anatomical zones have been reported to 
harbor more TAMs than other parts of the tumor [9, 67].

Radiation-induced vascular permeability is also known 
to play a critical role in the process of mesenchymal 
transition as it has been found to result in infiltration 
of immune cells into the brain parenchyma and sub-
sequently create highly immunologically active milieu 
through which macrophages/microglia contribute to 
PMT [11, 35]. Furthermore, Minata et  al. have recently 
found that GBM cells express CD109 protein via C/EBPb 
in response to the radiation-induced proinflammatory 
microenvironment and that CD109 drives oncogenic 
signaling through TAZ/YAP cascade which subsequently 
results in PMT (Fig. 1b) [91]. Such work has revealed that 
the interplay between the microenvironment and master 
mesenchymal regulators may further enhance the plastic-
ity of GBM transcriptome.

Another critical feature of GBM microenvironment 
is hypoxia, which is a key driver of both tumor growth 
and angiogenesis [29, 49]. Hypoxic cells have been shown 
to activate pro-angiogenic factors, including VEGF/
VEGFR, TGFβ, and PDGFR through the stabilization of 

HIF-1/2α, and subsequent HIF-induced transcriptional 
changes elicit the recruitment of inflammatory cells, and 
of particular importance, the PMT (Fig. 1c) [29, 92]. For 
example, Joseph et  al. have demonstrated that hypoxia 
enhances the invasive capacity of GBM cells by promot-
ing HIF1α-ZEB1 axis-mediated mesenchymal transition 
[61]. Of note, chronic anti-angiogenic therapy was found 
to lead to excessive pruning of tumor vessels potentiat-
ing hypoxia, which, in turn, exacerbates inflammatory 
and angiogenic microenvironment and subsequently pro-
motes PMT [92, 115]. These results may partly explain 
the treatment failure of anti-angiogenic therapy in GBM 
patients [43]. From these observations, it is likely that 
each tumor microenvironmental factor cooperates with 
each other to form a vicious circle of interactions through 
which mesenchymal transition is promoted.

Additionally, astrocytes, which co-exist with GBM 
cells in the hypoxic microenvironment, were found to 
release IL-6, -8 and CCL20, which up-regulate HIF-1α in 
a CCR6/NF-κB signaling-dependent manner and thereby 
helping GBM cells better adapt to hypoxia (Fig. 1d) [59]. 
The possible involvement of astrocytes in contributing 
to mesenchymal transition is further corroborated by a 
recent study by Niklasson et al. who found that the sig-
nature of mesenchymal GBM recapitulates the reactive 
astrocyte cell state [101].

Metabolic factors
Genomic abnormalities in genes encoding critical meta-
bolic enzymes have long been recognized to be associated 
with pathogenesis [94, 171]. Altered energy metabolism 
may also impact the transcriptomic signature of GBM, 
which is a rapidly growing tumor with high proliferation 
index and neighboring geographic necrosis [151].

Especially, as the Warburg effect states, glucose metab-
olism in neoplastic cells is primarily characterized by 
increased glucose uptake and enhanced aerobic glyco-
lysis, converting glucose into pyruvate which eventually 
results in increased production of lactate [41]. Not sur-
prisingly, it has been reported that glycolytic activity was 
significantly increased in mesenchymal GBM relative to 
proneural GBM, and the highly glycolytic nature of mes-
enchymal GBM may indicate its propensity to metabo-
lize glucose to lactic acid at an elevated rate (Fig.  2) [1, 
23, 86]. Subsequently, when lactate is exported into the 
extracellular space through monocarboxylate transport-
ers (MCTs), the tumor environment becomes acidic, 
which results in a local inflammatory response consist-
ing of various immune cells, including TAMs. These 
cells, in turn, secrete cytokines and growth factors that 
promote mesenchymal-related characteristics in GBM 
cells [44, 107, 138]. It is also suggested that lactate pro-
motes an immune-permissive microenvironment partly 
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by stimulating the polarization of resident macrophages 
to the M2 state [22, 127]. Additionally, lactate has been 
reported to stabilize HIF-1α, activate NF-κB signal-
ing cascade, and also induce secretion of VEGF from 
tumor-associated stromal cells, all of which are the char-
acteristics of mesenchymal GBM [112, 141, 154, 155]. 
Interestingly, according to the reverse Warburg effect, 
these immune cells of recruited TAMs may also up-reg-
ulate MCT4 in an HIF-1α/NF-κB dependent manner, 
resulting in increased synthesis and export of lactate that 
may exacerbate the acidity of the tumor microenviron-
ment and further enhance the glycolytic capacity of GBM 
cells [111, 147, 165]. Notably, it has been reported that 
mesenchymal GBM exhibits a high degree of necrosis 
compared to non-mesenchymal subtypes and that lac-
tate accumulation is known to often occur within areas 
of necrosis, suggesting that necrotic mesenchymal GBM 

cells may also be an additional source of lactate in the 
tumor microenvironment (Fig. 2) [65].

The potential relevance of lactate in promoting the 
mesenchymal signature was further supported by Hei-
land et  al. who investigated the landscape of metabo-
lomics–transcriptomic alterations in GBM [51]. They 
showed that metabolites such as choline and lactate are 
closely associated with immune- and hypoxia-related 
clusters, both of which show strong enrichment in the 
mesenchymal signature of GBM [51]. Although a more 
precise and mechanistic role of dysregulated metabo-
lism in promoting mesenchymal GBM still remains to 
be elucidated, these studies imply that certain meta-
bolic features may foster the mesenchymal features as 
tumor progresses in an angiogenic and hypoxic tumor 
microenvironment [146].

Fig. 2  The impact of metabolic factors on shaping GBM transcriptome. Metabolic alterations associated with the mesenchymal signature of GBM. 
The three possible sources of lactate in GBM tumor are mesenchymal GBM cells, necrotic GBM cells, and macrophages/microglia present in the 
microenvironment of the tumor. Compared to GBMs of other transcriptional subtypes, mesenchymal GBM is characterized by a high production 
rate of lactate, which intensifies the acidity of the tumor microenvironment. Furthermore, the interaction between GBM cells and the attracted 
macrophages/microglia further promotes the mesenchymal property of the tumor
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Treatment‑related factors
Although the current standard treatment resulted in the 
improvement of median overall survival of GBM patients 
from 12.1 to 14.6  months, the disease often progresses 
within 7–10  months, with the 2-year survival rate less 
than 20% [103, 176]. Such treatment failures and the high 
rate of recurrence of GBM have now been partly attrib-
uted to treatment-induced phenotypic and genomic 

changes in the recurrent tumors, and/or PMT. A typi-
cal pattern of tumor re-growth from proneural signature 
towards mesenchymal phenotype after surgical resection 
followed by various treatments is illustrated in Fig. 3.

Firstly, the therapeutic failure may be attributed to radi-
ation therapy, which may ultimately induce mesenchymal 
transition in tumor as reported in many studies [9, 11, 
47, 70, 91, 166, 184]. Mechanistically, radiation-induced 

Fig. 3  Treatment-induced proneural-to-mesenchymal transition. a Pre-operative tumor of proneural subtype. The tumor consists of more proneural 
GBM cells than mesenchymal cells. Also, the necrotic core of the tumor is shown containing hypoxic and necrotic GBM cells along with astrocytes 
and macrophages/microglia. b Post-operative state of the tumor region. Residual tumor and stromal cells remain beyond the margins after surgical 
resection. Such residual cells would then experience therapeutic stresses from various kinds of treatments, including radiation, chemotherapy and 
antiangiogenic therapy, and may be associated with treatment-induced mesenchymal transformation of the tumor. c Post-therapeutic tumor of 
mesenchymal subtype. The tumor contains more mesenchymal GBM cells than proneural cells. The recurrent tumor is extensively vascularized than 
the primary tumor, as newly formed blood vessels are highly branched
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mesenchymal transition is accompanied by the upregu-
lation of CD44 and activation of NF-κB pathways. Par-
ticularly, radiation treatment triggered the expression 
of master mesenchymal regulators, such as C/EBPb 
and STAT3, and also mesenchymal proteins, includ-
ing YKL-40, COL1A1, ACTA2, Vimentin, and MMP9, 
many of which are also the key players in EMT [47, 70]. 
Importantly, these radiotherapy-associated changes have 
been found to contribute to the poor response to post-
radiation treatment and subsequently dismal outcome 
of the patients, implying a vicious circle of the radia-
tion and the radiation-associated aftereffects [11]. Cel-
lularly, radiation-induced transformation was associated 
with increased cellular motility and invasion through the 
expression of TGF-β, VEGF, and epidermal growth fac-
tor, whose blockade enhanced the radiation response 
[150, 187]. Radiation-induced mesenchymal transition 
has also been observed in other types of malignancy, 
such as colorectal cancer [64].

Based on these observations, many studies have been 
conducted to identify therapeutics that may prevent 
post-radiation side effects. Adhesion G-protein-coupled 
receptor, or GPR56/ADGRG1, has been found to inhibit 
mesenchymal differentiation and the associated radi-
oresistance by targeting the NF-κB signaling pathway 
[93]. Also, YM155, a purported radiosensitizer, has been 
shown to prevent radiation-induced invasion in GBM by 
targeting STAT3 [184]. Furthermore, STAT3 blockade 
such as JAK2 inhibitors (AZD1480 or ruxolitinib) was 
found to augment the therapeutic efficacy of radiation 
and subsequently abrogate the mesenchymal signature in 
GBM [70].

Another type of therapy found to be linked to mes-
enchymal transformation in GBM is anti-angiogenic 
therapy. Due to a prominent neovascularity of GBM, anti-
angiogenic therapy, such as bevacizumab and/or suni-
tinib, was considered hopeful in treating GBM tumors of 
both newly diagnosed and recurrent. However, in a large 
prospective phase III trial, the use of adjuvant bevaci-
zumab resulted only in the improvement of progression-
free survival from 1.5 to 4.2 months but not in the overall 
survival [19, 43, 73, 164]. Along with the glioma stem 
cell accumulation, the failure of anti-angiogenic therapy 
has largely been attributed to mesenchymal transforma-
tion in GBM cells [77, 115, 116]. Piao et al. have demon-
strated that predominant biological processes occurring 
after the antiangiogenic therapy are the upregulation of 
genes involved in mesenchymal-related pathways, cellu-
lar migration and invasion, and also the influx of immune 
cells secreting chemokines and cytokines, which may act 
in an autocrine or paracrine fashion to potentiate mes-
enchymal shift in glioma cells [27, 96, 115]. Furthermore, 
bevacizumab has been reported to increase the uptake 

of glucose and its conversion into lactate, which may 
increase the acidity of the tumor microenvironment [36].

Additionally, whether TMZ-associated therapeutic 
effect, such as TMZ-induced mutagenesis, might partly 
and/or indirectly contribute to mesenchymal transition 
is worthy of further investigation [7, 60]. TMZ-induced 
hypermutated GBMs at recurrence was found to be asso-
ciated with an increased frequency of CD8+ lymphocytes 
[161], which were also found to be present at a higher 
density in mesenchymal GBM than GBMs of other tran-
scriptional subtypes [120].

Furthermore, although extracranial metastasis of 
GBM is extremely rare, occurring in less than 2% of the 
patients, GBMs have been reported to metastasize to 
other organs such as lungs and soft tissue of the poste-
rior neck at the time of recurrence [126]. Based on the 
characteristics of mesenchymal GBM cells, it is likely 
that these cells may possess greater ability to metastasize 
extracranially, as their invasive and migratory capacity is 
highly increased.

All these studies collectively indicate that PMT, or 
mesenchymal transition in general, is a characteristic 
phenomenon of GBM cells in response to treatments. 
However, it is again important to note that 55% of tumors 
from IDH-wildtype GBM patients retained their origi-
nal transcriptional subtype at recurrence [161], raising 
controversy over preclinical studies mentioned herein or 
implying a reversible phenotypic shift of non-mesenchy-
mal-to-mesenchymal-to-non-mesenchymal transition. 
Therefore, more research is needed to reduce the dis-
crepancy between the results obtained from preclinical 
and large-scale analysis of clinical datasets. Such research 
will be key to maximize the potential of bench-to-bed-
side translation for efficient adjuvant GBM therapy.

Therapeutic strategies against transcriptomic plasticity
The aforementioned characteristics of transcriptomic 
plasticity raise several critical clinical implications for 
GBM therapy. It is now evident that standard-of-care 
first-line treatment is insufficient to effectively abolish 
GBM whose transcriptome is capable of evolving into a 
distinct and more aggressive phenotype. The apparent 
transcriptomic plasticity of GBM suggests that the treat-
ment regimen for GBM should also consider the onco-
genic pathways that may distinctively be activated as 
tumor progresses and also that targeted therapy should 
be applied concurrently or as a part of multimodal treat-
ment strategy.

To address this issue, several novel therapeutic modali-
ties have been developed and intensively studied [14, 46, 
56, 85]. Especially, specific inhibitors of the mesenchy-
mal phenotype in combination with other therapeutic 
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regimen have been suggested to synergistically inhibit 
GBM progression and/or mesenchymal transition [10, 
11, 70]. Nevertheless, multidrug therapies could be asso-
ciated with treatment complications as it was reported 
by Batchelor et al. who showed that the combination of 
TMZ with bevacizumab resulted in high toxicity and 
intracranial hemorrhage in a group of patients [8].

As previously discussed, TAMs are the major tumor 
microenvironmental cell types that play a critical role 
in the process of mesenchymal transformation in GBM, 
and therefore, targeting TAMs may be a viable thera-
peutic approach to not only augment the therapeutic 
efficacy of radiotherapy [2], but also impede the subse-
quent mesenchymal transition. The translational poten-
tial of targeting TAMs was investigated by Pyonteck et al. 
who used BLZ945, which is a brain-penetrant inhibi-
tor of colony stimulating factor-1 receptor (CSF-1R), to 
target TAMs and demonstrated a significant increased 
survival in the treated mice [122]. An interesting obser-
vation from this study was that CSF-1R blockade did 
not affect the number of TAMs, but rather, decreased 
pro-tumorigenic M2 markers in TAMs, suggesting that 
TAMs are “re-educated” to perform antitumor activity. 
Furthermore, it was shown that CSF-1R inhibition by 
PLX3397, which hampers the tyrosine kinase activity of 
CSF-1R, prevented radiation-recruited monocytes from 
differentiating into immunosuppressive and pro-tumori-
genic M2 macrophages [131, 143, 170]. Of note, GBMs 
may also develop resistance to sustained CSF-1R block-
ade. It was observed that > 50% of tumors relapsed after 
BLZ945 treatment. However, combined treatment of 
BLZ945 with blockades for either insulin-like growth fac-
tor-1 receptor (IGF-1R) or phosphatidylinositol 3-kinase 
(PI3K), the activities of which were found to be elevated 
in recurrent GBM, resolved the resistance to CSF-1R 
inhibitor [123]. Similarly, PLX3397 alone was not found 
effective in treating recurrent GBMs in a phase II clinical 
trial, suggesting that a combined therapy may be needed 
to augment the potential efficacy of targeting CSF-1R in 
GBM [13].

Unfortunately, to our knowledge, there has been no 
study investigating the therapeutic efficacy of CSF-1R 
inhibition specifically on mesenchymal GBM or whether 
it can prevent subtype transitioning into mesenchymal 
signature. The genetically engineered mouse models of 
glioma used by Akkari et  al. to examine the combined 
therapeutic efficacy of CSF-1R inhibitor and radiotherapy 
were generated in an Ink4a/Arf-deficient background 
(platelet-derived growth factor-driven Ink4a/Arf KO), 
which was previously reported to closely resemble the 
proneural subtype of GBM [2, 47]. Given a tight asso-
ciation between mesenchymal GBM and the abundance 
of infiltrated TAMs, it would be worth investigating if 

mesenchymal GBM would represent the most sensi-
tive subtype to CSF-1R inhibition compared to other 
transcriptional subtypes [11, 131, 137]. Of note, the two 
recurrent GBM patients who had best progression-free 
survival after PLX3397 treatment in a phase II clinical 
trial were found to exhibit the mesenchymal signatures 
[13]. Additionally, since TAMs have also been reported 
to be associated with angiogenesis, vasculogenic mimicry 
and revascularization after radiation in GBM xenografts, 
it will also be instructive to examine the synergistic effect 
of CSF-1R inhibitors with anti-angiogenic therapy, which 
was shown effective in high-grade serous ovarian cancer 
[80, 129, 162].

Oncolytic virotherapy may also circumvent mesenchy-
mal transition in GBM by promoting the polarization 
state of TAMs as pro-inflammatory and antitumoral M1 
phenotype. As it was discussed in the recent review by 
Zhang and Liu, genetically modified oncolytic viruses 
expressing immunomodulatory transgenes have been 
considered as a promising therapeutic tool for glioma 
treatment [182]. Combined treatment of oncolytic her-
pes simplex virus expressing IL-12 with two checkpoint 
inhibitors (anti-CTLA-4 and anti-PD-1) resulted in the 
regression of GBM tumor in a preclinical mouse model 
and, interestingly, this treatment was found to be associ-
ated with influx of macrophages of M1-like polarization 
state [132]. Moreover, the effectiveness of the oncolytic 
adenovirus Delta24-RGD was investigated which pro-
duced a prolonged M2 to M1 TAMs phenotype shift 
in GBM, suggesting that oncolytic virotherapy may be 
applied to modulate radioresistance [152, 161]. Nota-
bly, the synergistic effect of oncolytic virotherapy with 
radiotherapy or TMZ was also reported, raising a fea-
sibility that oncolytic virus may effectively be used with 
standard-of-care treatment [6, 42, 75]. Further studies are 
needed to determine whether oncolytic virotherapy pre-
vents subtype plasticity and/or mesenchymal transfor-
mation in GBM.

Genomic aberrations in neurofibromin 1 (NF1) gene 
have been reported as one of the major characteristics 
of the mesenchymal GBM, and NF1 deficiency has been 
shown to recruit TAMs to the tumor site, indicating that 
reconstituting functional NF1 may prevent mesenchymal 
transformation in GBM [155, 161]. As reviewed by Leier 
et al. biotechnology-based therapeutic strategies, such as 
cDNA replacement, CRISPR-based DNA repair and exon 
skipping, are being developed as a form of mutation-
directed therapies to repair the NF1 gene [71]. Further-
more, since the loss of NF1 in glial cells has been found 
to be associated with increased RAS activity, targeting 
the RAS-downstream signaling pathways (e.g., the RAF-
MEK-ERK signaling cascade) through MEK inhibition 
may be another viable therapeutic strategy to prevent 
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NF1-associated mesenchymal transformation in GBM 
[17, 57, 78].

Currently, salvage therapy for the recurrent GBMs gen-
erally includes reoperation, fractionated re-irradiation, 
re-chemotherapy, gamma knife radiosurgery (GKRS) 
and various kinds of targeted therapies, which are usually 
applied to patients in clinical trials [95]. Among these, 
GKRS has been placed as one of the attractive and rela-
tively safe salvage treatments for the recurrent GBMs [39, 
69]. Dual treatment of radiosurgery and bevacizumab was 
reported to benefit both the overall (11.2–17.9  months) 
and progression-free survival (3.9–14.9 months) of GBM 
patients [95, 106]. This indicates that the combination 
of salvage GKRS and adjuvant chemotherapy may offer 
a novel treatment option to improve the prognosis of 
patients with recurrent mesenchymal GBMs.

Nonetheless, tumors may also progress after GKRS 
and it has been reported that the patterns of recurrence 
are similar to those of conventional radiation, implying 
the possible development of the mesenchymal signature 
in GKRS-induced response in tumor [106]. Importantly, 
symptomatic radionecrosis, which commonly results 
from avascularized tissue at the site of the GKRS target, 
is a well-recognized treatment risk of stereotactic radio-
surgery [109]. Telangiectasis was observed to be the most 
prominent vasculature in the radionecrotic and/or peri-
necrotic region where the abundant expression of VEGF 
was concomitantly observed, and the reactive astrocytes, 
which were intensively distributed in this area, were 
found to be a major source of VEGF production [102]. 
Similarly, Yoritsune et  al. reported that the perinecrotic 
area formed after intensive radiotherapy is mainly infil-
trated by two distinct cell populations—reactive astro-
cytes and microglias, which were found to express VEGF 
and HIF-1α, respectively [175]. These studies imply that 
GKRS-induced symptomatic radionecrosis may be an 
indicator of the development of mesenchymal GBM. 
Although GKRS-associated transcriptomic changes have 
not been reported to date, it may be speculated that focal 
radiation may strongly activate the master mesenchymal 
regulators, suggesting that the therapeutic intervention 
of mesenchymal inhibitors may be needed to circumvent 
GKRS-associated complications.

Thermotherapy has also been described as a promis-
ing therapeutic modality for both newly diagnosed and 
recurrent GBMs and a growing body of evidence implies 
that it may be used as a salvage treatment option for the 
therapy-resistant mesenchymal GBMs. Laser intersti-
tial thermal therapy (LITT) is a minimally invasive ther-
mal ablation approach that surgically addresses not only 
symptomatic radionecrosis, but also high-grade gliomas 
that are treatment refractory and/or unresectable [52, 53, 
136]. LITT has been reported to promote the disruption 

of the blood–brain barrier, thereby enhancing the effects 
of adjuvant chemotherapies [52, 136], suggesting that 
dual treatment of LITT and mesenchymal inhibitors 
may be useful in treating recurrent mesenchymal GBMs 
[54]. Another type of thermotherapy is magnetic hyper-
thermia, which generates heat by magnetic nanoparticles 
in response to the application of an external alternating 
magnetic field [83, 87]. Alongside producing a local-
ized thermo-ablative effect, the therapeutic potential of 
magnetic hyperthermia has been described based on its 
synergistic effect as a chemoradiosensitizer [63, 84], and 
also immunomodulatory effect [140]. These suggest that 
magnetic hyperthermia may be applied to modulate the 
immunosuppressive microenvironment of mesenchymal 
GBM patients. Of note, such heat-based therapies have 
been associated with elevated expression of the family 
of heat shock proteins, which may reduce the efficacy of 
subsequent thermotherapies [34]. It has been reported 
that thermotolerance may be achieved by the expression 
of HSP90, HSP70 and HSP27, which have also been sug-
gested to promote mesenchymal transformation in GBM 
[125], indicating that mesenchymal inhibitors may be 
needed to prevent possible thermotherapy-associated 
transcriptomic shift.

The synergistic and possible adverse effects of the com-
bined therapeutic modalities, including those described 
here, must be actively investigated to optimize the ther-
apeutic design and to add to the armamentarium of the 
current standard-of-care with the goal of impeding mes-
enchymal transformation in GBM.

Biomarkers and therapeutic targets 
for mesenchymal glioblastoma
In addition to the master mesenchymal regulators, there 
are a number of genes and molecules which have been 
identified, through a large-scale transcriptomic analysis, as 
both biomarkers and therapeutic targets for mesenchymal 
GBM. The understanding of their interactions with each 
other, with master mesenchymal regulators, and also with 
the tumor microenvironmental factors will offer an instru-
mental opportunity to develop an effective and selective 
therapeutic modality for mesenchymal GBM patients.

As mentioned previously, one of the most well-defined 
biomarkers for mesenchymal GBM is genomic aberration 
in NF1 locus. While EGFR and PDGFRA amplifications 
are the major genomic abnormalities in classical and 
proneural GBMs, respectively, deficiency in NF1, mainly 
via homozygous and hemizygous deletions, was observed 
as a highly frequent event in mesenchymal GBMs, and 
the pathobiological significance of such loss was associ-
ated with the infiltration of TAMs into the tumor micro-
environment followed by PMT and radioresistance [11, 
130, 155, 161].
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Chong et  al. based on the association of cell surface 
sialyation with tumor cell invasiveness, investigated the 
role of ST3GAL1 sialytransferase gene in GBM and found 
that this is triggered by TGFβ signaling pathway typically 
in mesenchymal GBM and also regulates gliomagenesis 
via APC/C-Cdh1-targeted control of FoxM1 protein deg-
radation. Particularly, they showed that ST3GAL1-asso-
ciated transcriptomic program favors the mesenchymal 
signature of GBM and is predictive of patient survival, 
suggesting that ST3GAL1-related processes may be a 
viable therapeutic target [20]. Also, S100A4, a gene that 
encodes a small calcium binding protein, was found as 
a critical upstream regulator of both EMT-associated 
proteins, including SNAIL2 and ZEB1, and some of the 
important mesenchymal signature genes in GBM, sug-
gesting S100A4 as a critical mesenchymal marker and 
therapeutic target [21]. Additionally, prosaposin, which 
is a conserved glycoprotein with multiple biological func-
tions, has recently been presented as a novel targeta-
ble biomarker for the treatment of mesenchymal GBM 
mainly because prosaposin plays a regulatory role in 
GBM invasion and PMT through TGFβ1/Smad signaling 
pathway [58]. Another critical modulator recently identi-
fied for mesenchymal GBM is sortilin, which is a member 
of the Vps10p sorting receptor family found to promote 
GBM invasion mainly via glycogen synthase kinase 3 
beta (GSK-3β)/β-catenin/Twist-induced mesenchymal 
transition, suggesting that AF38469, a novel inhibitor of 
sortilin, may be a selective antitumor agent for sortilin-
overexpressing mesenchymal GBM [172]. Furthermore, 
anti-apoptotic protein, such as BIRC3, has been identi-
fied as a biomarker for mesenchymal GBM habitats in 
the hypoxic microenvironment. The expression of BIRC3 
was found to correlate with that of HIF-1α in a hypoxic 
tumor region, and it was shown that BIRC3 is a key mole-
cule mediating the survival adaptation in hypoxia-driven 
mesenchymal GBM habitats [157]. Given a tight associa-
tion of the mesenchymal subtype and a high degree of 
tumor necrosis, an enzyme such as transglutaminase 2, 
or TGM2, was found as a key molecular switch of necro-
sis-induced mesenchymal differentiation by regulating 
the master mesenchymal transcription factors [174].

Some microRNAs (miRNAs) have also been identi-
fied to be associated with mesenchymal GBM. miRNAs 
are non-coding RNAs ranging from 18 to 24 nucleo-
tides in length that negatively regulate gene expression 
at the post-transcriptional level [55]. Their expression 
may be either contributory or inhibitory to various types 
of cancers, including GBM [110, 160]. One of the miR-
NAs found critical for mesenchymal transition in GBM 
is miR-23a, which was found to induce the expression of 
invasion- and PMT-related molecules, including RhoA, 
RhoC, Snail, Slug, and MMP9 [168]. On the other hand, 

miR-504 was found to suppress the aggressive biologi-
cal processes related with the mesenchymal phenotype 
of GBM primarily through negatively regulating FZD7-
mediated Wnt–β-catenin pathway, and, correspondingly, 
low miR-504/FZD7 expression ratio was found as a mes-
enchymal subtype marker and prognostic indicator for 
GBM patients [76].

The summary of the recent findings of potential targets 
and biomarkers for mesenchymal GBM, including those 
mentioned herein, is presented in Table 1. It seems that a 
diverse class of molecules contribute to the acquisition of 
the mesenchymal transcriptome in GBM. Understanding 
their collective involvement in the establishment of the 
mesenchymal signature during GBM progression will be 
critical to salvage patients failing multimodal therapeutic 
approaches applied today.

Concluding remarks
Despite much effort to characterize GBM at molecular 
and cellular levels, GBM still remains the most challeng-
ing solid primary tumor of the central nervous system. 
The large-scale genomic and transcriptomic profiling 
of GBMs at the various levels has provided an unprece-
dented knowledge of the dynamic inter- and intratumoral 
transcriptomic heterogeneity, which is plastic rather than 
static. In the present review, we have discussed molecular 
pathobiology associated with mesenchymal transforma-
tion in GBM and its clinical relevance; however, addi-
tional studies are required to clear several controversies 
over the prognosis of mesenchymal GBM patients and to 
target the phenotypic plasticity as an adjuvant therapy.

As evidenced by many studies, the inflammatory nature 
of mesenchymal GBM suggests that the immunologic 
status of patients, the heterogeneous activity of both 
immunostimulatory and immunosuppressive cell types 
in the tumor immune compartment, and their complex 
interplay with master mesenchymal regulators must be 
investigated to understand the impact of inflammatory 
microenvironment on shaping the mesenchymal signa-
ture. Such analysis may help us to develop a more effec-
tive immunotherapy for immunologically reactive, and 
yet, refractory mesenchymal GBMs.

Also, it has now become evident that second-line GBM 
therapy should consider the molecular characteristics 
of re-evolved tumor and consist of a targeted therapy 
specifically aimed at altered molecular features. To this 
end, a more accurate preclinical model, which effectively 
recapitulates the molecular characteristics of the original 
tumor and may be developed in a clinically relevant time 
frame, is urgently needed to provide a testing ground of 
combination of various targeted therapies.

In conclusion, GBM cells harness many different kinds 
of signaling pathways to their advantage to survive the 
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therapy-insulted microenvironment; therefore, multidis-
ciplinary therapeutic approaches, which are optimized 
to the unique biology of brain, should be encouraged 
as they may provide synergistic effects against the pro-
gressing tumor [45, 149]. In this regard, the addition 
of master mesenchymal regulator inhibitors may be a 
viable second-line therapeutic option as it may circum-
vent therapy-associated transcriptomic alterations in the 
recurrent tumor. Thus, the identification of additional 
master transcriptional regulators and their correspond-
ing inhibitors may significantly improve not only the 
current understanding of the seemingly complex tran-
scriptional regulatory network of mesenchymal GBM, 
but also the treatment response of patients with mesen-
chymal tumors at recurrence.
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Table 1  A list of molecules identified to contribute to the establishment of the mesenchymal signature in GBM

Category Name Identified Mode of Actions Potent Inhibitor(s) References

Master tran‑
scriptional 
regulators

STAT3 Normally operate opposing signals (neurogenesis versus 
gliogenesis) combined expression is linked to the mesen‑
chymal signature

YM155/AZD1480/ ruxolitinib [16, 70, 184]

C/EBPβ N/A

TAZ TAZ–TEAD interaction / cooperates with PDGF-B Verteporfin [10, 156]

Other proteins S100A4 Regulates SNAIL2, ZEB1 and the mesenchymal signature 
genes

N/A [21]

Prosaposin TGF-β1/Smad signaling pathway LY2109761 (TGF‐β1 inhibitor) [58]

Sortilin (GSK-3β)/β-catenin/Twist signaling axis AF38469 [172]

BIRC3 Induced by hypoxia N/A [157]

FoxM1 Activation loop of ADAM17/EGFR/GSK3β TAPI-2 [179]

Nrf2 Positive feedback loop between SQSTM1/p62 and Nrf2 N/A [118]

PBX3 Activation of MEK/ERK1/2 N/A [167]

FOXO1 Regulates mesenchymal marker proteins (N-cadherin, 
Vimentin, CD44, and YKL‐40)

AS1842856 (type 2 diabetes mellitus) [97]

SIN3a (hepatic insulin sensitivity) [68]

Enzymes ST3GAL1 TGFβ signaling pathways SB431542 (TGFβ inhibitor) [20]

AL10 (lung cancer) [18]

TGM2 Regulates C/EBPβ expression directly by polymerization of 
GADD153 via NF-κB activation

GK921 [174]

microRNAs miR-23a miR-23a/HOXD10 axis N/A [168]

miR-10b HOXD10/NOTCH1/TP53/PAX6 axis N/A [74]

miR-504 Negatively regulates FZD7-mediated Wnt–β-catenin 
pathway

N/A [76]

miR-128a/miR-504 Negatively regulates expression of mesenchymal markers 
(YKL-40, CD44, and Vimentin)

N/A [82]
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