23,815 research outputs found

    Current Challenges in the Development of Quantum Dot Sensitized Solar Cells

    Get PDF
    This is the peer reviewed version of the following article: Current Challenges in the Development of Quantum Dot Sensitized Solar Cells, which has been published in final form at https://doi.org/10.1002/aenm.202001774. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.Quantum dot sensitized solar cells (QDSSCs) have experienced a continuous performance growth in the past years presenting a photoconversion efficiency > 13%. QDSSCs constitute a smart approach to take advantage of the properties of semiconductor quantum dots (QDs), mitigating the transport constrains. In contrast with other QD solar cell configurations, for QDSSCs, the record efficiencies have been reported with Pb and Cd‐free based sensitizers. The development of techniques in order to provide photoanodes with very high QD loading and the discovery of new electrolytes, including all solid configurations, are the most important future challenges that this technology must address to further increase cell performance and stability

    Studying Diquark Structure of Heavy Baryons in Relativistic Heavy Ion Collisions

    Full text link
    We propose the enhancement of Λc\Lambda_c yield in heavy ion collisions at RHIC and LHC as a novel signal for the existence of diquarks in the strongly coupled quark-gluon plasma produced in these collisions as well as in the Λc\Lambda_c. Assuming that stable bound diquarks can exist in the quark-gluon plasma, we argue that the yield of Λc\Lambda_c would be increased by two-body collisions between udud diquarks and cc quarks, in addition to normal three-body collisions among uu, dd and cc quarks. A quantitative study of this effect based on the coalescence model shows that including the contribution of diquarks to Λc\Lambda_c production indeed leads to a substantial enhancement of the Λc/D\Lambda_c/D ratio in heavy ion collisions.Comment: Prepared for Chiral Symmetry in Hadron and Nuclear Physics (Chiral07), Nov. 13-16, 2007, Osaka, Japa

    The influence of position in overlap joints of Mg and Al alloys on microstructure and hardness of laser welds

    Get PDF
    Structure and properties of laser beam welding zone of dissimilar materials, AZ31 magnesium alloy and A5754 Aluminum alloy, are investigated. The microstructure and quality of the Mg/Al weld were studied by metallography, microhardness and optical microscopy. Differences in physical and mechanical properties of both materials, magnesium and aluminum, affect weldability and resistance of this combination, and lead to the formation of intermetallic compounds in the welded metal

    Erlang Code Evolution Control

    Full text link
    During the software lifecycle, a program can evolve several times for different reasons such as the optimisation of a bottle-neck, the refactoring of an obscure function, etc. These code changes often involve several functions or modules, so it can be difficult to know whether the correct behaviour of the previous releases has been preserved in the new release. Most developers rely on a previously defined test suite to check this behaviour preservation. We propose here an alternative approach to automatically obtain a test suite that specifically focusses on comparing the old and new versions of the code. Our test case generation is directed by a sophisticated combination of several already existing tools such as TypEr, CutEr, and PropEr; and other ideas such as allowing the programmer to chose an expression of interest that must preserve the behaviour, or the recording of the sequences of values to which this expression is evaluated. All the presented work has been implemented in an open-source tool that is publicly available on GitHub.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Influence of gravitational field on quantum-nondemolition measurement of atomic momentum in the dispersive Jaynes-Cummings model

    Get PDF
    We present a theoretical scheme based on su(2) algebra to investigate the influence of homogeneous gravitational field on the quantum nondemolition measurement of atomic momentum in dispersive Jaynes-Cummings model. In the dispersive Jaynes-Cummings model, when detuning is large and the atomic motion is in a propagating light wave, we consider a two-level atom with quantized cavity-field in the presence of a homogeneous gravitational field. We derive an effective Hamiltonian describing the dispersive atom-field interaction in the presence of gravitational field. We can see gravitational influence both on the momentum filter and momentum distribution. Moreover, gravitational field decreases both tooth spacing of momentum and the width of teeth of momentum.Comment: 21 pages, 8 figure

    Potential and efficiency of statistical learning closely intertwined with individuals’ executive functions: A mathematical modeling study

    Get PDF
    Statistical learning (SL) is essential in enabling humans to extract probabilistic regularities from the world. The ability to accomplish ultimate learning performance with training (i.e., the potential of learning) has been known to be dissociated with performance improvement per amount of learning time (i.e., the efficiency of learning). Here, we quantified the potential and efficiency of SL separately through mathematical modeling and scrutinized how they were affected by various executive functions. Our results showed that a high potential of SL was associated with poor inhibition and good visuo-spatial working memory, whereas high efficiency of SL was closely related to good inhibition and good set-shifting. We unveiled the distinct characteristics of SL in relation to potential and efficiency and their interaction with executive functions
    • 

    corecore