
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18843  | https://doi.org/10.1038/s41598-020-75157-8

www.nature.com/scientificreports

Potential and efficiency 
of statistical learning closely 
intertwined with individuals’ 
executive functions: 
a mathematical modeling study
Jungtak Park1, Hee‑Dong Yoon1,2, Taehyun Yoo1, Minho Shin1 & Hyeon‑Ae Jeon1,2,3*

Statistical learning (SL) is essential in enabling humans to extract probabilistic regularities from the 
world. The ability to accomplish ultimate learning performance with training (i.e., the potential of 
learning) has been known to be dissociated with performance improvement per amount of learning 
time (i.e., the efficiency of learning). Here, we quantified the potential and efficiency of SL separately 
through mathematical modeling and scrutinized how they were affected by various executive 
functions. Our results showed that a high potential of SL was associated with poor inhibition and good 
visuo-spatial working memory, whereas high efficiency of SL was closely related to good inhibition 
and good set-shifting. We unveiled the distinct characteristics of SL in relation to potential and 
efficiency and their interaction with executive functions.

Statistical learning (SL) is an implicit mechanism that requires learners to extract probabilistic regularities from 
the environment1–7. It is a critical process in our daily lives based on the fact that, through SL, learners grasp 
probabilistic regularities to predict upcoming events and prepare appropriate actions effectively. It has been 
examined across tasks using various types of stimuli, including visual stimuli8, tactile stimuli9, non-linguistic 
sounds10, auditory syllables11, and action segmentation12. SL has been scrutinized by an alternating serial reaction 
time (ASRT) task in which odd-numbered visual stimuli generate a fixed motor sequence and even-numbered 
visual stimuli establish random sequences such that participants learn the motor sequence implicitly13–16.

The effect of SL, being defined as the difference in learning performance between probable targets (i.e., fre-
quently occurring stimuli) and improbable targets (i.e., infrequently occurring stimuli)15,17,18, is known to be 
related to the frontal lobe of the brain that has been intertwined with higher-order cognitive functions, particu-
larly executive functions14,15,19–21. For example, the effect of SL was negatively correlated with a composite score 
that is an average value of normalized scores of several neuropsychological tests to assess executive functions19. 
An electroencephalography (EEG) study found a dynamic human brain network, showing that a functional 
connectivity of frontal areas was negatively correlated with individuals’ SL performance15. Even though these 
studies posit a close relationship between SL and the executive functions, there is still a limited understanding 
of SL. Executive functions include various cognitive processes such as response inhibition, set-shifting, and 
working memory22–25. From these processes, which one is the most pertinent to SL remains unclear. Considering 
that executive functions are integral to high-level cognitive processes in humans, it is worth scrutinizing each 
individual process of executive functions in relation to SL.

Learning is not a single entity but is underpinned by several mechanisms26. When discussing learning mecha-
nisms, we have to consider two distinct features, that is, the potential of learning and the efficiency of learning. 
The potential of learning is the ability to accomplish an ultimate learning performance given that learners are 
provided with all the optimal conditions during the progression of learning26,27, and the efficiency of learning is 
the performance improvement per amount of learning time26,28. Interestingly, these two features have been known 
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to be dissociated from each other26. For example, even though older adults required more time for motor skill 
acquisition compared to younger adults, their final performance was comparable to that of younger adults29,30. 
This indicates that, even though the older and younger adults needed different learning times (implying different 
learning efficiency) to achieve a comparable level of performance, their final levels of performance were similar 
(implying similar learning potential). Potential and efficiency are of great importance in learning. However, 
no study has conducted an investigation with respect to these two features, particularly in SL. Therefore, in the 
present study we distinguished the efficiency of learning from the potential of learning in SL and examined their 
relations to executive functions, hoping to unveil the contribution of several processes of executive functions (i.e., 
response inhibition, set-shifting, and working memory) to both the potential and efficiency of SL.

We suggest mathematical modeling as a proper way to estimate individuals’ potential and efficiency of learn-
ing objectively and quantitatively. Mathematical modeling formally describes a part (or parts) of cognition in 
a simplified fashion by converting problems or ideas that should be identified in the experiment into math-
ematical representations, using mathematical formulations31,32. Mathematical modeling, by providing precise 
quantification, describes assumptions about how observed data is generated and developed33 such that it helps 
better understanding and clarification of research questions or theories than qualitative descriptions32,34. In this 
approach, a model comparison is crucial to select the best model to describe empirical data and to predict its 
possible changes more precisely35. Researchers have used mathematical modeling in describing the benefits from 
practice in learning and found the exponential function36 to be the standard equation to describe and predict 
the improvement in learning performances36–40. In the present study, we focused on SL and aimed to find the 
best model to reflect SL performances by testing goodness-of-fit of the exponential function in comparison 
with power or linear functions (as control models)41–44. According to a formula of the exponential function, 
a learning rate decreases and eventually stays consistent even with increasing practice36. Using this function, 
we estimated the potential and efficiency of SL and investigated the dynamic changes in SL performance (for 
details, see “Methods”). Using mathematical modeling, we objectified abstract psychological phenomena (i.e., 
the potential and efficiency of SL) as being measurable estimates such that we were able to provide a prevailing 
account of how these two features reconcile with various executive functions during SL.

Out of several executive functions, we aimed to elucidate which of them had the most influence on the poten-
tial and efficiency of SL. To this end, we first examined the effect of SL in an ASRT task through the difference 
in learning performance between probable targets and improbable targets. The ASRT task had three different 
conditions: pattern type with a high probability condition (Pattern-High), random type with a high probability 
condition (Random-High), and random type with a low probability condition (Random-Low) (Fig. 1). Because 
the Random-High and Random-Low conditions were separated only by probability (i.e., a high probability and 
a low probability) with the same type (i.e., random type), the comparison between these two conditions—SL 
scores—enabled us to evaluate the effect of SL. Second, in virtue of mathematical modeling, we quantified partici-
pants’ potential and efficiency of SL by model fitting with SL scores. Third, we calculated correlation coefficients 
between the scores of neuropsychological tests for executive functions and the potential and efficiency of SL, 
presenting a novel and precise explanation of how these two overarching features of SL are mediated by various 
executive functions. To foreshadow the core findings, exponential function was selected as the best model to 
represent SL scores. Accordingly, by measuring the potential and efficiency of SL using the exponential model, 
we found that inhibitory control was negatively correlated with the potential of SL and positively correlated with 
the efficiency of SL. Furthermore, good set-shifting was associated with a high efficiency of SL and good visuo-
spatial working memory was related to a high potential of SL. Our study makes significant progress towards 
unraveling the overarching roles of both the potential and efficiency of SL, which are closely interwoven with 
various executive functions.

Results
Descriptive statistics of data from the ASRT task.  Participants showed high accuracy (total: 91.9%, 
SD = 2.0; Pattern-High: 92.7%, SD = 1.0; Random-High: 92.9%, SD = 1.6; Random-Low: 90.2%, SD = 1.8) and 
fast reaction times (RTs) (Total: 285.0 ms, SD = 6.1; Pattern-High: 284.1 ms, SD = 4.1; Random-High: 280.5 ms, 
SD = 4.3; Random-Low: 290.3 ms, SD = 5.1). These results indicate that participants successfully performed the 
ASRT task.

Effect of SL and effect of type through multiple linear regressions.  We hypothesized that an increase 
in performance differences between Random-High and Random-Low occurs through the progression of SL, and 
thus an interaction between conditions (i.e., Random-High and Random-Low) and learning time (i.e., block 
order) predicts the effects of SL. We used a multiple linear regression45 with two independent variables of condi-
tions (i.e., Random-High and Random-Low) and learning time (i.e., block order), and included the interaction 
between the conditions and learning time for the prediction of SL effects in behavioral performances (i.e., accu-
racy and RTs). The results are shown in the Table 1. The effect of SL (i.e., interaction term) significantly affected 
RT [ t(68) = 2.7, P = 0.008, 95% confidence interval (CI95%) = 0.8 to 5.0], while a marginal influence was observed 
for accuracy [ t(68) = − 2.0, P = 0.053, CI95% = − 0.010 to 7.2 ×10−5 ]. These results showed that the participants’ suc-
cess in capturing probabilistic sequences in the ASRT task was well represented by the RT data. Moreover, since 
participants’ accuracy remained very high across all the conditions, we used only RT data for further analyses. 
We also examined the effect of type (Table 2) that induces the performance difference between Pattern-High and 
Random-High over the learning time. However, no significant effect of type was found in our data [accuracy: t(68) 
= − 1.3, P = 0.190, CI95% = − 0.008 to 0.002; mean RT: t(68) = − 0.6, P = 0.530, CI95% = − 2.6 to 1.4].
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Figure 1.   Design of ASRT task. (A) The experiment consisted of 36 blocks with rest blocks in between. A block 
started with four empty circles shown on the screen for 200 ms, then a trial started with a dog’s face being shown 
in one of the four circles for 500 ms. Participants were asked to push one of four buttons corresponding to the 
target (a dog’s face) position. A block consisted of 85 trials with an inter-trial-interval (ITI) of 120 ms. Pattern 
trials (P) and random trials (R) were shown in an alternating order, which established an alternating serial 
sequence composed of eight target trials. For example, the figure showed the sequence of 31224312 where red 
numbers (3–2–4–1–) were repeated 10 times within a block and were alternated with blue random numbers. 
The red and blue colors are displayed here for an easy explanation and were not shown in the actual experiment. 
(B) We combined three trials into a triplet so that alternating serial sequences generated three conditions such as 
Pattern-High, Random-High, and Random-Low. Probability is based on the number of occurrences of a triplet, 
that is, high probability or low probability. Type is based on a triplet composed of either P–R–P [pattern type] 
or R–P–R [random type]. In the example, ‘3–1–2’ is Pattern-High, which indicates that 2 (pattern trial) is highly 
predictable after 3 (pattern trial) and 1 (random trial). Random type can be either high probability (Random-
High) or low probability (Random-Low). Some triplets in the random type (3–1–2, 12.5%) could also be 
observed in the pattern type (3–1–2, 50%), and thus they were referred to Random-High. The rest of the triplets 
in random type are Random-Low, because they had a low probability of occurrence [37.5% (12.5% × 3)].

Table 1.   Effect of SL measured by a multiple linear regression model (Random-High vs. Random-Low). SE 
standard error, CI confidence interval, Adj.R2 adjusted R2 , AICc corrected Akaike information criterion, BIC 
Bayesian information criterion.

Coefficients

β SE t P CI95%

Accuracy

(Constant) 0.929 0.002 520.0 P = 3.9 × 10–124 0.925 to 0.932

Condition − 0.026 0.003 − 10.5 P = 8.4 × 10–16 − 0.031 to − 0.021

Block order − 0.011 0.002 − 6.2 P = 4.2 × 10–8 − 0.015 to − 0.007

Interaction − 0.005 0.003 − 2.0 P = 0.053 − 0.010 to 7.2 × 10–5

RT (ms)

(Constant) 280.5 0.751 373.7 P = 2.2 × 10–114 279.0 to 282.0

Condition 9.8 1.062 9.3 P = 1.2 × 10–13 7.7 to 11.9

Block order − 1.0 0.751 − 1.3 P = 0.197 − 2.5 to 0.5

Interaction 2.9 1.062 2.7 P = 0.008 0.8 to 5.0

Model summary

F(3,68) P Adj.R2 AICc BIC

Accuracy 75.95 1.1 × 10–21 0.760 − 444.4 − 435.9

RT 31.27 8.1 × 10–13 0.561 425.5 434.0
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Mathematical modeling of SL scores.  We examined the effect of SL using SL scores that are defined as 
absolute values of the performance differences between Random-High and Random-Low (see “Data analysis” for 
details). To find the best model to delineate participants’ SL scores, we investigated three different models known 
to represent learning progress41–44,46. Using maximum likelihood estimation (MLE)47,48, we fitted an exponential 

model [y = w1(1− e
−

x−w2
w3 )] , a power model [y = w1(x − w2)

w3 ], and a linear model [ y = w1(x − w2)+ w3 ] to 
all the participants’ SL scores. The parameters w are different estimated parameters in the three learning models. 
Values of the parameters, corrected Akaike information criterion ( AICc)49, and Bayesian information criterion 
( BIC)50 for the learning models are shown in Table 3. To select the best model, we calculated the �AICc and the 
Bayes factor (see “Data analysis” for details) for all models. Based on the scales for interpreting the �AICc and 
the Bayes factor (Table 4)49,51,52, the exponential function turned out to be a better model fit than the linear func-
tion ( �AICc = 7, Bayes factor = 54.6) (Table 5). Moreover, since the exponential function had the smallest value 
of AICc and BIC (Table 3), we concluded that modeling our data with the exponential function worked best, and 
thus we considered only the exponential model for further analyses.

It is challenging to quantify psychological factors (i.e., the potential and efficiency of learning) using objec-
tive measures (i.e. accuracy and RTs). However, through mathematical modeling we were able to investigate the 

Table 2.   Effect of type measured by a multiple linear regression model (Pattern-High vs. Random-High). SE 
standard error, CI confidence interval, Adj.R2 adjusted R2 , AICc corrected Akaike information criterion, BIC 
Bayesian information criterion.

Coefficients

β SE t P CI95%

Accuracy

(Constant) 0.927 0.002 571.6 P = 6.3 × 10–127 0.924 to 0.930

Condition − 0.002 0.002 0.7 P = 0.468 − 0.003 to 0.006

Block order − 0.008 0.002 − 4.9 P = 5.5 × 10–6 − 0.011 to − 0.005

Interaction − 0.003 0.002 − 1.3 P = 0.190 − 0.008 to 0.002

RT (ms)

(Constant) 284.1 0.703 404.1 P = 1.1 × 10–116 282.7 to 285.5

Condition − 3.6 0.994 − 3.6 P = 5.2 × 10–4 − 5.6 to − 1.6

Block order − 0.4 0.703 − 0.5 P = 0.620 − 1.8 to 1.1

Interaction − 0.6 0.994 − 0.6 P = 0.530 − 2.6 to 1.4

Model summary

F(3,68) P Adj.R2 AICc BIC

Accuracy 23.71 1.3 × 10–10 0.490 − 458.3 − 449.8

RT 5.15 2.9 × 10–3 0.149 416.1 424.6

Table 3.   Value of parameters, AICc , and BIC in mathematical models. Exponential an exponential model, 
Power a power model, Linear a linear model, AICc corrected Akaike information criterion, BIC Bayesian 
information criterion.

Models fitted to SL scores

Exponential Power Linear

Parameter w1 13.25 3.20 0.27

Parameter w2 − 0.39 − 0.34 − 0.50

Parameter w3 10.28 0.41 4.74

AICc 12,514 12,517 12,521

BIC 12,508 12,511 12,516

Table 4.   Scales for interpreting the �AICc and Bayes factor for model M1 against model M0. AICc corrected 
Akaike information criterion.

�AICc Bayes factor Interpretation

< 2 < 1 Substantially supports the M0

2–4 1–3 Not worth more than a bare mention

4–7 3–20 Positively supports the M1

7–10 20–150 Strongly supports the M1

> 10 > 150 Very strongly supports the M1
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change of SL over time using the estimated learning curve in the exponential model [ y = A× (1− e−(x−x0)/τ )] 
(Fig. 2). Here, the potential, efficiency, and starting point of SL in all the participants were successfully quanti-
fied by the saturation level of the SL score ( A ), the time constant ( τ ), and the x-intercept ( x0 ), respectively. The 
estimated equation for SL scores was: y = 13.25× (1− e−

x+0.39
10.28 ) . This indicated that participants’ saturation level 

of SL scores was 13.25 ms ( A = 13.25) and that the SL scores reached the 63.2% (≈ 1− 1
e ) of the curve amplitude 

in the 10th block ( τ = 10.28), which means that if the SL scores continue to increase with its initial learning rate, 
the SL scores would reach its saturation level ( A = 13.25ms ) after the 10th block ( τ = 10.28). The time constant 
( τ ) is a deterministic factor of efficiency in a systerm53–59. Arbitrary large τ or small τ represent the slow gain 
or the fast gain respectively to reach the saturation level of the estimated SL scores. The x-intercept was almost 
zero ( x0 = − 0.39), implying that participants had already started to learn the probabilistic associations of the 
sequences from the beginning of the ASRT task. Since the individual difference in the starting point of SL is not 
our main concern, no further discussion will be provided on the starting point of SL.

Correlation analysis.  We were interested in how various executive functions influenced each individual’s 
potential and efficiency of SL. Therefore, we tested participants by using various neuropsychological tests (see 
Supplementary method). We subsequently correlated the test scores with the individually estimated saturation 

Table 5.   Comparison of model fittings. AICc corrected Akaike information criterion.

M1 vs.M0 �AICc Bayes factor

Exponential vs. linear 7 54.6

Power vs. linear 4 12.2

Exponential vs. power 3 4.5

Figure 2.   The increase of SL scores in all the participants over time. X-axis and y-axis indicate the block order 
and SL score, respectively. Gray dots represent averaged SL scores of all the participants and the black solid line 
is an estimated curve from the exponential model. The blue dashed line exhibits the saturation level of SL scores 
( A ). The τ (the red circle) is a time point to reach approximately 63.2% of A (the red star). Error bars indicate the 
standard error of the mean.

Table 6.   Correlations between the scores of neuropsychological tests and the saturation level of SL score ( A ) 
and the time constant ( τ). Category Category fluency test, Letter Letter fluency test, CST Counting span test, 
CBT Corsi block-tapping test, WCST Wisconsin card sorting test, Stroop Stroop test, ANT Attention network 
test, GNG Go/No-go test, (F) forwards, (B) backwards.

Scores of participants’ neuropsychological tests

Category Letter CST (F) CST (B) CBT (F) CBT (B) WCST Stroop ANT GNG

Saturation level of SL score ( A)
r − 0.038 0.003 0.003 0.076 0.268 0.009 0.089 − 0.087 0.259 − 0.040

P 0.735 0.981 0.981 0.510 0.028 0.942 0.459 0.428 0.019 0.718

Time constant (τ)
r − 0.031 0.024 − 0.066 0.029 0.172 − 0.133 0.244 − 0.013 0.242 − 0.019

P 0.787 0.833 0.570 0.804 0.167 0.281 0.047 0.907 0.031 0.870
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level of SL scores ( A ) as the indication of the potential of SL, and with the time constant ( τ ) as the indication of 
the efficiency of SL, using Kendall’s tau (Table 6). Across all participants, the potential of SL ( A) showed signifi-
cant positive correlation with the scores of the Corsi block-tapping test [Forwards; CBT(F)] (r = 0.268, P = 0.028), 
indicating that participants with better visuo–spatial working memory had a higher potential of SL. The poten-
tial of SL ( A) also showed a significant positive correlation with the scores of the attention network test (ANT) 
(r = 0.259, P = 0.019). Since the higher scores in ANT indicates worse performance in inhibition, this result notes 
that participants with poor inhibition demonstrated a higher potential of SL.

The efficiency of SL ( τ ) was positively correlated with the scores of the Wisconsin card sorting test (WCST) 
(r = 0.244, P = 0.047) and ANT (r = 0.242, P = 0.031). Lower scores in WCST and ANT imply better set-shifting 
and better inhibition, respectively. Similarly, a lower value of the efficiency of SL ( τ ) also indicates better effi-
ciency of SL. Therefore, the results indicate that people with good set-shifting ability and good inhibitory control 
performed the ASRT task more efficiently, achieving better SL as learning progressed.

To summarize, individuals with good inhibitory control showed high efficiency, but they seemed to be less 
competent in their potential of SL. With regard to visuo-spatial working memory and set-shifting, both functions 
turned out to interact positively with the potential and efficiency of SL, respectively.

Additionally, we observed a positive correlation between the potential of SL ( A) and the efficiency of SL ( τ ) 
(r = 0.442, P = 8.26 × 10–5). Since lower values of τ indicate better efficiency of SL, this result indicates that par-
ticipants who have higher potential tend to show lower efficiency in SL.

Discussion
We have used mathematical modeling to better understand SL with two critical components of learning, that 
is, the potential and efficiency of SL and examined how various executive functions (i.e., response inhibition, 
set-shifting, and working memory) interacted with them. We revealed several important results. First, good 
inhibition was associated with a low potential of SL, but with a high efficiency of SL. Second, good set-shifting 
was closely related to a high efficiency of SL. Last, good visuo-spatial working memory was interconnected with 
a high potential of SL. In the following, we discuss our findings in depth with respect to the nature of SL, more 
specifically, when SL is still in progress (the efficiency of SL) and ultimately completed (the potential of SL).

A comprehensive analysis of SL with potential and efficiency through mathematical mod‑
eling.  Studies on SL have yielded conflicting results regarding its interaction with executive functions60–62. 
For example, there was no significant correlation between learning performance from an implicit SRT task and 
executive functions measured by forwards and backwards digit span tests and WCST63. Opposingly, significant 
correlations were observed between learning performance of the ASRT task and composite scores of several neu-
ropsychological tests (a listening span test, a counting span test, and a letter fluency test)19, showing an important 
role of executive functions in SL. One possible explanation for this discrepancy may be derived from failing to 
examine the two critical components in learning, that is, the potential of learning and the efficiency of learning. 
Only few studies have scrutinized the dissociation between these two components using a motor learning task26, 
and no one has elucidated them in detail, particularly with respect to SL. Therefore, we adopted mathematical 
modeling to quantify the potential of SL ( A ) and the efficiency of SL ( τ ) and interrogated how these two over-
arching components function in SL and how they interact with executive functions.

Opposing roles of inhibition between the potential of SL and the efficiency of SL.  Inhibition, 
one of the key abilities of executive functions, is known to substantially interact with the learning process64,65. 
For example, kindergarteners (mean age = 5.8  years, SD = 3.9  months) with better inhibitory control showed 
more improvement when performing a number line estimation task than those with poorer inhibition65, which 
provides a supporting role of inhibitory control in children learning mathematics. In the same vein, participants 
who achieved a high score in second language acquisition exhibited good inhibition64. These studies support a 
positive contribution of inhibitory control during mathematics and language learning.

However, if we consider a more specific type of learning, namely SL, it is known to be negatively correlated 
with executive functions14,15. One interesting result is that hypnosis boosted SL performance14. The advantage of 
hypnosis was derived from the reduced functional connectivity between frontal and related brain areas, which 
led to the disturbance in attentional control and executive functions. Another study also showed that poor execu-
tive functions were interconnected with better sequence learning66. In line with these studies, we demonstrated 
that poor inhibitory control (e.g., high scores in ANT) was strongly correlated with a high potential of SL ( A ). 
To interpret this finding, we have to again look closely into the potential of learning with respect to the ultimate 
completion of learning. The completion of learning cannot go unnoticed without considering automaticity. 
Learning is considered to be completed when it becomes automatized with minimal involvement of attention or 
inhibitory control67–70. An early stage of learning usually requires a higher degree of attentional and inhibitory 
controls. Conversely, a late stage of learning requires less attentional and inhibitory controls and more attributes 
of automaticity67,69,71–73. Previous studies showed that grasping regularities of external stimuli was facilitated when 
one became automatized in SL with less involvement of executive functions and more responsiveness to statisti-
cal probabilities, by weakening attentional control or inhibition74,75. Likewise, the present study also provides 
a consistent result, demonstrating that a high potential of SL, which is associated with the ultimate completion 
of learning, is attributed to the high level of automaticity in learning and thus characterized by the low levels of 
attention and inhibitory control.

However, the efficiency of SL yields an opposite result from the potential of SL, showing that people good 
at executive functions such as set-shifting and inhibitory control demonstrated better efficiency of SL (WCST 
and ANT in τ in Table 6). Unlike the potential of SL, which is concerned with the completion of learning, the 
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efficiency of SL is related to the improvement in learning performance with practice, whereby it emphasizes the 
ongoing progress in SL. This fundamental difference—the completion of SL (the potential) and the ongoing 
progress in SL (the efficiency)—seems to be the main factor to give rise to the opposing results between the 
potential and efficiency of SL in terms of executive functions. As learning progresses, one becomes automatized 
by restructuring variables involved in self-monitoring, error correction, or resolving signal-to-noise processing 
problems72,76–78. This indicates that error correction provides an inextricable link to successful learning. Previ-
ous studies showed that error rates resort to individuals’ inhibitory control79–81. For instance, people deficient 
in inhibitory control had difficulty waiting to press a button, being inclined to make more errors82. In the Go/
No-go test, participants with poor inhibition had difficulty in suppressing an impulse to respond to a ‘No-go’ 
signal, whereupon they made substantial errors and as a result had trouble with learning79. In the present study, 
our participants achieved a high success rate of more than 90% in all the conditions, which indicates that they 
progressed in SL through monitoring their own behaviors, inhibiting incorrect button presses, and correcting 
erroneous behaviors. Acquiring high accuracy coincides with making fewer errors that are also compatible with 
good inhibition and good error correction. Consequently, those who are better at executive functions—par-
ticularly inhibition (ANT) in our correlation analysis—advanced in SL, showing more improvement with better 
efficiency of SL. It should be noted that, among the neuropsychological tests for inhibition (i.e., ANT, Stroop, 
and Go/Nogo), only ANT scores were correlated with the efficiency of SL in the present study. The reason for 
this discrepancy seems to stem from the involvement of spatial attention in ANT, but not in Stroop and Go/
No-go. One of the important functions required for the successful performance in ANT is the correct allocation 
of attention on a target that should be spatially separated from distractors83,84. In line with this, our participants 
also assigned attention to the target position correctly for the successful performance in the ASRT task85–88. 
Resultingly, we argue that the significant correlation between the efficiency of SL and ANT scores may be derived 
from the involvement of inhibition, specifically in combination with spatial attention.

To summarize, we suggest that the significant interaction between high potential of SL and poor inhibition 
may be attributed to the fact that the potential deals with the completion of learning that is accompanied by a 
certain degree of automaticity free from inhibitory control. On the contrary, the efficiency of SL pertains to the 
progress of SL that requires active involvement of self-monitoring, error correction, and inhibition, and thus 
may benefit from good executive functions.

A positive relation between set‑shifting and the efficiency of SL.  Set-shifting, also known as cog-
nitive flexibility or mental flexibility, designates changing perspectives by virtue of accommodating new require-
ments or rules and overcoming inertial behavior82. Specifically in the motor domain, it is important to be flexible 
for learners to shift stimulus–response mappings correctly for a given trial during the course of learning26,89. Our 
results support this argument, showing that those who made fewer errors in WCST had good efficiency of SL. 
The WCST is known to measure the function of set-shifting90,91. Learners who make fewer perseverative errors 
in WCST are competent in set-shifting due to high mental flexibility and less perseveration25,82,92,93. Thus, they 
are proficient at correcting errors, which is beneficial to learning. In the same vein our participants, showing bet-
ter performance in WCST, were relatively flexible in correcting errors, which enhanced their learning progress 
in SL and they consequently obtained a high efficiency of SL.

A positive relation between visuo‑spatial working memory and the potential of SL.  A 
series of studies have been conducted to investigate the relationship between working memory and sequence 
learning19,46,94, suggesting that people who have higher working memory spans learn sequences more easily than 
those with lower ones13,95. This argument was investigated in more detail in the present study, focusing on the 
potential of SL. Coinciding with previous studies, we also found a positive correlation between the Corsi block-
tapping test scores (forwards) and potential of SL ( A ). In other words, participants with better visuo-spatial 
working memory demonstrated a higher potential of SL. This positive relationship may be underpinned in the 
assertion that good visuo-spatial working memory contributes to SL. As previously mentioned, the positive cor-
relation between ANT and the efficiency of SL explained the critical role of spatial attention in SL, because par-
ticipants were supposed to allocate their attention correctly to the target position while blocking distractors85–88. 
In the same vein, good visuo-spatial working memory seems to aid in learning alternating serial sequences in 
our ASRT task, helping participants to learn the target position more accurately. To summarize, based on the 
correlation results from ANT and the efficiency of SL, and Corsi block-tapping test and the potential of SL, we 
suggest a supporting role of visuo-spatial function over the course of SL.

The possible potential–efficiency tradeoff in SL.  The positive correlation between the potential of SL 
(A) and the efficiency of SL (τ) indicates that the more the potential of SL increases, the more the efficiency of SL 
decreases. This correlation result may be interpreted as a possible potential–efficiency tradeoff in SL. We found 
a similar idea from the well-known phenomenon, so called, the speed–accuracy tradeoff, which indicates that 
decisions are made slowly with high accuracy and rapidly with a high error rate96–99. Analogously, the ultimate 
learning performance (i.e., the potential of learning) would be high when the performance improvement per 
amount of learning time (i.e., the efficiency of learning) happens slowly. However, this argument should be vali-
dated more carefully with respect to SL in future studies.

Limitations.  Despite the prevailing account of the exponential function to describe SL in the present study, 
we should consider fitting other mathematical models to the data. Various types of learning patterns in SL have 
been noted, such as a gradual learning pattern, a decreasing pattern, or a stepwise pattern100, which may involve 
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different cognitive functions or learning strategies101. Therefore, a future study should look into possible math-
ematical models intrinsic to these various SL patterns.

Conclusion
The current study examined SL from several different viewpoints. First, we emphasized individuals’ potential of 
learning (i.e., how much one could achieve in learning) and efficiency of learning (i.e., how efficiently one could 
learn), and applied these two components to SL. Second, we used mathematical modeling such that we could 
rigorously and objectively quantify individuals’ potential and efficiency in SL and unveiled an appropriate math-
ematical model to best explain SL, that is, an exponential function. Third, we associated executive functions (e.g., 
inhibition, set-shifting, and working memory) with SL so that we could elucidate how these abilities interact with 
individuals’ potential and efficiency. Using two critical components of learning mechanisms, namely potential 
and efficiency15,17,18,102–104, the present study sheds new light on the profound understanding of SL processes.

Methods
Participants.  Forty-four Koreans (mean age = 20.32 years, SD = 1.35 years; 22 females) participated in the 
experiment. All were right-handed with normal or corrected-to-normal vision and had no history of neurologi-
cal disease. Every participant signed an informed consent form prior to the experiment. Four participants’ data 
were excluded from the analysis due to mild depression and a color vision deficiency. The power analysis and 
minimum sample size were computed based on previous studies14,15,19 and with the use of PASS software (https​
://www.ncss.com/softw​are/pass/)105. A priori power analysis indicated a minimum of 36 participants to reach 
a power of 0.85 for the Kendall’s tau correlation analysis that would detect a correlation coefficient of 0.5 at the 
significance level α = 0.05. Therefore, the data of 40 participants were considered to be sufficient for the analysis. 
This study was approved by the Daegu Gyeongbuk Institute of Science and Technology (DGIST) ethics commit-
tee in accordance with the Declaration of Helsinki.

Procedure.  Participants were tested in two sessions over two separate days. In Session 1, they took seven 
neuropsychological tests [the word fluency tests (category and letter)106–108, counting span tests (forwards and 
backwards)109, Corsi block-tapping tests (forwards and backwards)110, Wisconsin card sorting test25,82,92,93, 
Stroop test82,111,112, attention network test82, and Go/No-go test79], which are known to assess several executive 
functions (see Supplementary method). In Session 2, participants performed an alternating serial reaction time 
(ASRT) task13–16. Several tools such as E-Prime 3.0113, MATLAB114, and Psytoolkit115,116 (a web-based environ-
ment) were used for running tests. In our ASRT task, no feedback was given to participants regarding their task 
performance. The ASRT task was composed of 36 blocks, which were alternated with rests (Fig. 1a). Each block 
started with four empty circles shown in the middle of a gray screen for 200 ms. A trial consisted of a target 
stimulus (a dog’s face) being presented for 500 ms in one of the four empty circles. Participants were asked to 
press a button corresponding to the target position as accurately and quickly as possible, using a Chronos button 
box (Psychology Software Tools Inc, Sharpsburg, PA) with the index and middle fingers of both hands. Between 
trials, four empty circles were presented for 120 ms as an inter-trial-interval. Each block had 85 trials. A fixated 
cross was shown for six to eight seconds during rests. Each block took 52.9 s and the entire ASRT task took 
approximately 38–40 min.

Unbeknown to the participants, we alternated between two kinds of main trials: pattern trials and random 
trials (Fig. 1a). In the pattern trial, the target (a dog’s face) was presented in a fixed position, whereas in the ran-
dom trial the target was displayed randomly in one of the four positions. For example, a sequence consisting of 
eight trials, such as 3r2r4r1r (number: a fixed position in the pattern trial, r: a random position in the random 
trial), indicates an alternating serial sequence of pattern trials (3_2_4_1_) and random trials (_r_r_r_r). In each 
block, the alternating serial sequence was repeated 10 times, and thus in total 360 times (10 times × 36 blocks) 
in the experiment. A specific pattern in the sequence was determined by an order of permutation (e.g., 1r2r3r4r, 
1r2r4r3r, …, 4r3r2r1r) for each participant so that the number of occurrences of every alternating serial sequence 
was counterbalanced across participants. After the ASRT task, participants were asked if they noticed a regular 
pattern during the experiment. Nobody reported regularities, which indicated that participants did not recognize 
the structure of the alternating serial sequence explicitly. The first five trials in each block were considered to be 
warm-up trials with targets in random positions and were not included in analyses.

Three different conditions were constructed by combining type (Pattern vs. Random) and probability (High 
vs. Low): Pattern-High, Random-High, and Random-Low (Fig. 1b). As for the type, a triplet was composed of 
three trials that were classified as either a pattern type triplet or a random type triplet117. For example, 3r2, 2r4, 
4r1, or 1r3 were pattern type triplets because they had two pattern trials (the first and third trials) which were 
shown regularly in the triplet and only one random trial (the second trial) between the pattern trials. However, 
r3r, r2r, r4r, or r1r triplets were random type triplets, because they included two random trials (the first and third 
trials) and only one pattern trial (the second trial) in the middle. With respect to the probability, some triplets 
(e.g., 312 in Pattern-High and 312 in Random-High in Fig. 1b) were shown more often than others because they 
were found in both pattern type and random type. On the other hand, some triplets (e.g., 311, 313, and 314) 
were presented only in the random type. Based on this difference in the occurrences of the triplets, we made a 
distinction between high probability triplets and low probability triplets. Taken together, we manipulated three 
conditions by integrating the type with the probability: Pattern-High (pattern type × high probability), Random-
High (random type × high probability), and Random-Low (random type × low probability). It is particularly 
important to note that Random-High and Random-Low were separated solely by the probability of the triplet 
occurrence, that is, a different probability of occurrences with the same type of triplet. Comparing these two 

https://www.ncss.com/software/pass/
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conditions (i.e., Random-High vs. Random-Low) made it possible to investigate the genuine effect of SL, only 
depending on the probability difference. Pattern-Low is not available in the ASRT task.

Exact probability of occurrence of the triplets was calculated as follows. The pattern type and random type 
were shown in the same proportion of 1:1. In the random type, Random-High and Random-Low were shown in 
the proportion of 1:3. Thus, the probabilities of occurrence of the Pattern-High, Random-High, and Random-
Low were 50%, 12.5%, and 37.5%, respectively (Fig. 1b). In consequence, high probability triplets and low prob-
ability triplets were shown in the proportion of 5:3 [62.5% (50% + 12.5%): 37.5%]. We should also consider the 
total number of triplets in each condition. Since the number of low probability triplets were three times more 
than the number of high probability triplets (48 in low probability triplets and 16 in high probability triplets), 
the high probability triplets were shown five times more than the low probability triplets probabilistically. This 
probability is calculated as follows Eq. (1):

Notably, a triplet is made of three sequentially presented trials, and a probability of the triplet is determined 
by the third trial. For example, Fig. 1b shows that even though high and low probability triplets have the identical 
stimulus positions in the first and second trials (i.e., 3–1– ), they are differentiated by the third trial (high: 3–1–2; 
low: 3–1–1, 3–1–3, and 3–1–4). Therefore, the third trial is the critical element in categorizing the triplets as 
either high probability or low probability, and thus accuracy and RTs only from the third trials were considered 
for the analysis.

Data analysis.  Investigation of participants’ performances in the ASRT task.  We performed all the following 
analyses using Python 3118. Our main interest was to identify the dynamic changes of SL performances over the 
course of learning time. To do this, first we confirmed if participants successfully achieved SL during the ASRT 
task with a simple model. The first factor was an effect of probabilistic structure in RTs. We examined this effect 
by comparing the performances of the high probability and low probability in the same type (i.e., Random-High 
vs. Random-Low). Since the Random-High and Random-Low have the same type (Random) with different 
probability (High vs. Low), this factor made it possible to solely examine the pure effects of SL. The second factor 
was the effect of learning time, which was represented by the block order showing how much learning time had 
passed. We investigated these two factors (PROBABILITY and BLOCK) independently through the multiple 
linear regression model45 in Eq. (2).

BLOCK = 1, 2, …, 36 (block order), PROBABILITY = High, Low, INTERACTION = BLOCK × PROBABILITY.
Here, we supposed that the coefficient of INTERACTION in the model represents the effect of SL over the 

course of learning time, since the slope of BLOCK would differ between the conditions (Random-High vs. 
Random-Low) as participants progress in learning.

Likewise, the effect of type (Pattern vs. Random) was investigated in the same probability (High) by compar-
ing the performances of Pattern-High and Random-High. The block order was used to measure the effect of 
learning time. These two factors were considered in the following multiple linear regression model to see the 
effect of learning type on RTs Eq. (3).

BLOCK = 1, 2, …, 36 (block order), TYPE = Pattern, Random, INTERACTION = BLOCK × TYPE.
For all the analyses we used only RTs of correct responses, and the block order was centered for a better fit.

Modeling SL scores.  To scrutinize the effect of SL together with time, we investigated the learning curve in SL. 
To this end, we defined SL scores as the following: absolute values of difference in RTs between Random-High 
and Random-Low. This indicated whether participants learned the statistical probabilities of the triplets1–3,15 
or not. We calculated the SL scores in every block to investigate the dynamic changes of SL over the course of 
learning time (block order). Specifically, since an individual’s overall speed of RT could affect the individual SL 
scores, we adjusted the SL score in each block divided by the mean RT of its corresponding block. We subse-
quently tested a first-order exponential model [y = w1(1− e

−
x−w2
w3 )] , a power model [y = w1(x + w2)

w3 ] , and a 
linear model [ y = w1(x − w2)+ w3] . Here, y and x indicate the SL scores and order of blocks, respectively. The 
estimated parameters w are different in each learning model. Maximum likelihood estimation (MLE) was used 
to fit the SL scores into learning curves47,48. To select a model to best explain our SL scores, we used two criteria 
of goodness-of-fit: the corrected Akaike information criterion ( AICc)49 and the Bayesian information criterion 
( BIC)50. Because we did not have many numbers of data point (36 blocks) and participants (40 participants), we 
used a corrected term ( AICc ) instead of the original AIC49,119. The equation of AICc and BIC are described below 
in Eq. (4) and Eq. (5). Here, k is the number of estimated parameters; n is the sample size; and L is the saturated 
value of the likelihood function for the model.

(1)

5
(

probability of occurence of high probability triplets
)

16
(

number of high probability triplets
) :

3
(

probability of occurence of low probability triplets
)

48
(

number of low probability triplets
) = 5 : 1

(2)Performances
(

accuracy or RTs
)

∼ BLOCK + PROBABILITY + INTERACTION

(3)Performances
(

accuracy or RTs
)

∼ BLOCK+ TYPE+ INTERACTION
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We compared the three models following the scales of Table 449,51,52. Specifically, when we compared the 
BIC values, we used Bayes factor120. The Bayes factor for model M1 against model M0 was calculated using the 
following Eq. (6).

The exponential function turned out to be the best fit for the SL scores compared to other models. This func-
tion is described as follows: y = A× (1− e−

x−x0
τ ) ( y : estimated SL scores, x : block order, A : saturation level 

of estimated SL scores, x0 : x-intercept,τ : exponential time constant). This equation is similar to a step response 
function of a first-order system53. In the step response, the saturation level of estimated values—A—reflects the 
predicted ultimate gain41. In our model, A represents the potential of SL that indicates participants’ ultimate 
performance in SL. The x-intercept—x0—reflects the starting point of SL. If the first-order system responds to a 
step input, the time constant ( τ ) is defined as a time point to reach 1− 1

e (≈ 63.2%) of A53. In principle, arbitrary 
large and small τ represent the slow and fast gain to reach the saturation level of the estimated values, and thus τ is 
a reliable factor to determine the efficiency of the system53–58. Here, we used the τ to determine the efficiency of SL 
that indicates how efficiently participants made progress in SL. When we estimated the value of these parameters 
in each participant, we used empirical boundaries ( A : [− 500, 500], x0 : [0, 50], τ : [1, 50], and standard deviation: 
[0, 30]). In this estimation process, we used the L-BFGS-B algorithm121,122 for bound constrained minimization 
and the initial parameter values of one.

Correlation analysis.  We calculated Kendall’s tau coefficient123 and two-sided p value between each individual’s 
neuropsychological test scores and the two parameters—A (potential of SL) and τ (efficiency of SL)—to explore 
the relationship between SL and various executive functions. In addition, we conducted a correlation analysis 
between A (the potential of SL) and τ (the efficiency of SL) to investigate the possible relationship between them. 
Since the x0 (starting point of SL) is not our main interest, we did not address the effect of the starting point in 
SL. We transformed all the scores into standard z-scores to better fit the normal distribution.

Data availability
Data in an anonymized form (in accordance to the ethics agreement) and scripts used in data analysis are avail-
able upon request.

Received: 21 May 2020; Accepted: 12 October 2020

References
	 1.	 Aslin, R. N. Statistical learning: a powerful mechanism that operates by mere exposure. Wiley Interdiscip. Rev. Cogn. Sci. https​

://doi.org/10.1002/wcs.1373 (2017).
	 2.	 Armstrong, B. C., Frost, R. & Christiansen, M. H. The long road of statistical learning research: past, present and future. Philos. 

Trans. R. Soc. Lond. B https​://doi.org/10.1098/rstb.2016.0047 (2017).
	 3.	 Reber, A. S. Implicit learning of artificial grammars. J. Verb. Learn. Verb. Behav. 6, 855–863 (1967).
	 4.	 Bertels, J., Franco, A. & Destrebecqz, A. How implicit is visual statistical learning?. J. Exp. Psychol. Learn. Mem. Cogn. 38, 1425 

(2012).
	 5.	 Hunt, R. H. & Aslin, R. N. Statistical learning in a serial reaction time task: access to separable statistical cues by individual 

learners. J. Exp. Psychol. Gen. 130, 658 (2001).
	 6.	 Kim, R., Seitz, A., Feenstra, H. & Shams, L. Testing assumptions of statistical learning: is it long-term and implicit?. Neurosci. 

Lett. 461, 145–149 (2009).
	 7.	 Aslin, R. N. & Newport, E. L. Statistical learning: from acquiring specific items to forming general rules. Curr. Dir. Psychol. Sci. 

21, 170–176. https​://doi.org/10.1177/09637​21412​43680​6 (2012).
	 8.	 Kirkham, N. Z., Slemmer, J. A. & Johnson, S. P. Visual statistical learning in infancy: evidence for a domain general learning 

mechanism. Cognition 83, B35-42 (2002).
	 9.	 Conway, C. M. & Christiansen, M. H. Modality-constrained statistical learning of tactile, visual, and auditory sequences. J. Exp. 

Psychol. Learn. Mem. Cogn. 31, 24–39. https​://doi.org/10.1037/0278-7393.31.1.24 (2005).
	 10.	 Gebhart, A. L., Newport, E. L. & Aslin, R. N. Statistical learning of adjacent and nonadjacent dependencies among nonlinguistic 

sounds. Psychon. Bull. Rev. 16, 486–490. https​://doi.org/10.3758/pbr.16.3.486 (2009).
	 11.	 Saffran, J. R., Johnson, E. K., Aslin, R. N. & Newport, E. L. Statistical learning of tone sequences by human infants and adults. 

Cognition 70, 27–52. https​://doi.org/10.1016/S0010​-0277(98)00075​-4 (1999).
	 12.	 Baldwin, D., Andersson, A., Saffran, J. & Meyer, M. Segmenting dynamic human action via statistical structure. Cognition 106, 

1382–1407. https​://doi.org/10.1016/j.cogni​tion.2007.07.005 (2008).
	 13.	 Howard, J. H. & Howard, D. V. Age differences in implicit learning of higher order dependencies in serial patterns. Psychol. 

Aging 12, 634–656. https​://doi.org/10.1037/0882-7974.12.4.634 (1997).
	 14.	 Nemeth, D., Janacsek, K., Polner, B. & Kovacs, Z. A. Boosting human learning by hypnosis. Cereb. Cortex 23, 801–805. https​://

doi.org/10.1093/cerco​r/bhs06​8 (2013).
	 15.	 Toth, B. et al. Dynamics of EEG functional connectivity during statistical learning. Neurobiol. Learn. Mem. 144, 216–229. https​

://doi.org/10.1016/j.nlm.2017.07.015 (2017).
	 16.	 Nemeth, D. et al. Sleep has no critical role in implicit motor sequence learning in young and old adults. Neurobiol. Learn. Mem. 

201, 351–358 (2010).
	 17.	 Janacsek, K., Ambrus, G. G., Paulus, W., Antal, A. & Nemeth, D. Right hemisphere advantage in statistical learning: evidence 

from a probabilistic sequence learning task. Brain Stimul. 8, 277–282. https​://doi.org/10.1016/j.brs.2014.11.008 (2015).

(4)AICc = 2k ×
n

n− k − 1
− 2× logL

(5)BIC = k × logn− 2× logL

(6)Bayes factor = e−0.5(BICM1−BICM0)

https://doi.org/10.1002/wcs.1373
https://doi.org/10.1002/wcs.1373
https://doi.org/10.1098/rstb.2016.0047
https://doi.org/10.1177/0963721412436806
https://doi.org/10.1037/0278-7393.31.1.24
https://doi.org/10.3758/pbr.16.3.486
https://doi.org/10.1016/S0010-0277(98)00075-4
https://doi.org/10.1016/j.cognition.2007.07.005
https://doi.org/10.1037/0882-7974.12.4.634
https://doi.org/10.1093/cercor/bhs068
https://doi.org/10.1093/cercor/bhs068
https://doi.org/10.1016/j.nlm.2017.07.015
https://doi.org/10.1016/j.nlm.2017.07.015
https://doi.org/10.1016/j.brs.2014.11.008


11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18843  | https://doi.org/10.1038/s41598-020-75157-8

www.nature.com/scientificreports/

	 18.	 Karuza, E. A. et al. The neural correlates of statistical learning in a word segmentation task: an fMRI study. Brain Lang. 127, 
46–54. https​://doi.org/10.1016/j.bandl​.2012.11.007 (2013).

	 19.	 Virag, M. et al. Competition between frontal lobe functions and implicit sequence learning: evidence from the long-term effects 
of alcohol. Exp. Brain. Res. 233, 2081–2089. https​://doi.org/10.1007/s0022​1-015-4279-8 (2015).

	 20.	 Nemeth, D., Csábi, E., Janacsek, K., Várszegi, M. & Mari, Z. Intact implicit probabilistic sequence learning in obstructive sleep 
apnea. J. Sleep Res. 21, 396–401 (2012).

	 21.	 Otero, T. M. & Barker, L. A. The Frontal Lobes and Executive Functioning 29–44 (Springer, 2014).
	 22.	 Friedman, N. P. & Miyake, A. Unity and diversity of executive functions: individual differences as a window on cognitive struc-

ture. Cortex 86, 186–204 (2017).
	 23.	 Stuss, D. T. & Alexander, M. P. Is there a dysexecutive syndrome?. Philos. Trans. R. Soc. B 362, 901–915 (2007).
	 24.	 Duncan, R., Johnson, M., Swales, C. & Freer, J. Frontal lobe deficits after head injury: unity and diversity of function. Cognit. 

Neuropsychol. 14, 713–741 (1997).
	 25.	 Miyake, A. et al. The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent 

variable analysis. Cogn. Psychol. 41, 49–100. https​://doi.org/10.1006/cogp.1999.0734 (2000).
	 26.	 Ren, J., Wu, Y. D., Chan, J. S. & Yan, J. H. Cognitive aging affects motor performance and learning. Geriatr. Gerontol. Int. 13, 

19–27 (2013).
	 27.	 Whitely, S. E. & Dawis, R. V. A model for psychometrically distinguishing aptitude from ability. Educ. Psychol. Measur. 35, 51–66 

(1975).
	 28.	 Bruce, G. in Evidence-Based Educational Methods (eds Daniel J. Moran & Richard W. Malott) 267–275 (Academic Press, Cam-

bridge, 2004).
	 29.	 Rodrigue, K. M., Kennedy, K. M. & Raz, N. Aging and longitudinal change in perceptual-motor skill acquisition in healthy 

adults. J. Gerontol. Ser. B 60, P174–P181 (2005).
	 30.	 Voelcker-Rehage, C. & Willimczik, K. Motor plasticity in a juggling task in older adults—a developmental study. Age Ageing 35, 

422–427 (2006).
	 31.	 Bender, E. A. An Introduction to Mathematical Modeling (Dover Publications, London, 2012).
	 32.	 McClelland, J. L. The Place of Modeling in Cognitive Science. Top. Cogn. Sci. 1, 11–38. https​://doi.org/10.111

1/j.1756-8765.2008.01003​.x (2009).
	 33.	 Roberts, S. & Pashler, H. How persuasive is a good fit? A comment on theory testing. Psychol. Rev. 107, 358–367. https​://doi.

org/10.1037/0033-295X.107.2.358 (2000).
	 34.	 Sun, R. The Cambridge Handbook of Computational Psychology (Cambridge University Press, 2008).
	 35.	 Alder, M. An Introduction to Mathematical Modelling (Heavenforbooks.Com, 2001).
	 36.	 Heathcote, A., Brown, S. & Mewhort, D. J. K. The power law repealed: the case for an exponential law of practice. Psychon. Bull. 

Rev. 7, 185–207. https​://doi.org/10.3758/bf032​12979​ (2000).
	 37.	 Estes, W. K. Toward a statistical theory of learning. Psychol. Rev. 57, 94 (1950).
	 38.	 Thurstone, L. L. The learning curve equation. Psychol. Monogr. 26, 1 (1919).
	 39.	 Ritter, F. E. & Schooler, L. J. The learning curve. Int. Encycl. Soc. Behav. Sci. 13, 8602–8605 (2001).
	 40.	 Palminteri, S., Wyart, V. & Koechlin, E. The importance of falsification in computational cognitive modeling. Trends Cogn. Sci. 

21, 425–433. https​://doi.org/10.1016/j.tics.2017.03.011 (2017).
	 41.	 Leibowitz, N., Baum, B., Enden, G. & Karniel, A. The exponential learning equation as a function of successful trials results in 

sigmoid performance. J. Math. Psychol. 54, 338–340. https​://doi.org/10.1016/j.jmp.2010.01.006 (2010).
	 42.	 Ritter, F. E. & Schooler, L. J. The learning curve. J Int. Encycl. Soc. Behav. Sci. 13, 8602–8605 (2001).
	 43.	 Anderson, J. R. Acquisition of cognitive skill. Psychol. Rev. 89, 369 (1982).
	 44.	 Lai, T. L., Robbins, H. & Wei, C. Z. Strong consistency of least squares estimates in multiple regression. Proc. Natl. Acad. Sci. 

USA. 75, 3034–3036. https​://doi.org/10.1073/pnas.75.7.3034 (1978).
	 45.	 Bo, J., Jennett, S. & Seidler, R. D. Working memory capacity correlates with implicit serial reaction time task performance. Exp. 

Brain. Res. 214, 73–81. https​://doi.org/10.1007/s0022​1-011-2807-8 (2011).
	 46.	 Usher, M. & McClelland, J. L. The time course of perceptual choice: the leaky, competing accumulator model. J. Psychol. Rev. 

108, 550 (2001).
	 47.	 Myung, I. J. Tutorial on maximum likelihood estimation. J. Math. Psychol. 47, 90–100 (2003).
	 48.	 Anderson, D. R. & Burnham, K. P. Avoiding pitfalls when using information-theoretic methods. J. Wildl. Manag. 66, 912–918 

(2002).
	 49.	 Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
	 50.	 Raftery, A. E. Approximate Bayes factors and accounting for model uncertainty in generalised linear models. J. Biomet. 83, 

251–266 (1996).
	 51.	 Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. J Soc. Methods Res. 

33, 261–304 (2004).
	 52.	 Lipták, B. G. Instrument Engineers’ Handbook: Process Control and Optimization (CRC/Taylor & Francis, Cambridge, 2006).
	 53.	 Bernacchia, A., Seo, H., Lee, D. & Wang, X. J. A reservoir of time constants for memory traces in cortical neurons. Nat. Neurosci. 

14, 366–372. https​://doi.org/10.1038/nn.2752 (2011).
	 54.	 Shankar, K. H. & Howard, M. W. A scale-invariant internal representation of time. Neural Comput. 24, 134–193. https​://doi.

org/10.1162/NECO_a_00212​ (2012).
	 55.	 Tiganj, Z., Hasselmo, M. E. & Howard, M. W. A simple biophysically plausible model for long time constants in single neurons. 

Hippocampus 25, 27–37. https​://doi.org/10.1002/hipo.22347​ (2015).
	 56.	 Gossen, E. R., Ivanova, T. D. & Garland, S. J. The time course of the motoneurone afterhyperpolarization is related to motor unit 

twitch speed in human skeletal muscle. J. Physiol. 552, 657–664. https​://doi.org/10.1111/j.1469-7793.2003.00657​.x (2003).
	 57.	 Ishijima, M. & Togawa, T. Chronodiagnostic acquisition of recovery speed of heart rate under bathing stress. Physiol. Meas. 20, 

369–375. https​://doi.org/10.1088/0967-3334/20/4/304 (1999).
	 58.	 Seborg, D. E., Mellichamp, D. A., Edgar, T. F. & Doyle, F. J. III. Process Dynamics and Control (Wiley, Hoboken, 2010).
	 59.	 Janacsek, K. & Nemeth, D. Implicit sequence learning and working memory: correlated or complicated?. Cortex 49, 2001–2006 

(2013).
	 60.	 Janacsek, K. & Nemeth, D. The puzzle is complicated: when should working memory be related to implicit sequence learning, 

and when should it not? (Response to Martini et al.). Cortex 64, 411–412 (2015).
	 61.	 Martini, M., Sachse, P., Furtner, M. R. & Gaschler, R. Why should working memory be related to incidentally learned sequence 

structures?. Cortex 64, 407–410. https​://doi.org/10.1016/j.corte​x.2014.05.016 (2015).
	 62.	 Feldman, J., Kerr, B. & Streissguth, A. P. Correlational analyses of procedural and declarative learning performance. Intelligence 

20, 87–114 (1995).
	 63.	 Gass, S. M., Behney, J. N. & Uzum, B. Psycholinguistic and Sociolinguistic Perspectives on Second Language Learning and Teaching 

91–114 (Springer, New York, 2013).
	 64.	 Laski, E. V. & Dulaney, A. When prior knowledge interferes, inhibitory control matters for learning: the case of numerical 

magnitude representations. J. Educ. Psychol. 107, 1035 (2015).

https://doi.org/10.1016/j.bandl.2012.11.007
https://doi.org/10.1007/s00221-015-4279-8
https://doi.org/10.1006/cogp.1999.0734
https://doi.org/10.1111/j.1756-8765.2008.01003.x
https://doi.org/10.1111/j.1756-8765.2008.01003.x
https://doi.org/10.1037/0033-295X.107.2.358
https://doi.org/10.1037/0033-295X.107.2.358
https://doi.org/10.3758/bf03212979
https://doi.org/10.1016/j.tics.2017.03.011
https://doi.org/10.1016/j.jmp.2010.01.006
https://doi.org/10.1073/pnas.75.7.3034
https://doi.org/10.1007/s00221-011-2807-8
https://doi.org/10.1038/nn.2752
https://doi.org/10.1162/NECO_a_00212
https://doi.org/10.1162/NECO_a_00212
https://doi.org/10.1002/hipo.22347
https://doi.org/10.1111/j.1469-7793.2003.00657.x
https://doi.org/10.1088/0967-3334/20/4/304
https://doi.org/10.1016/j.cortex.2014.05.016


12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18843  | https://doi.org/10.1038/s41598-020-75157-8

www.nature.com/scientificreports/

	 65.	 Fletcher, P. C. et al. On the benefits of not trying: brain activity and connectivity reflecting the interactions of explicit and implicit 
sequence learning. Cereb. Cortex 15, 1002–1015. https​://doi.org/10.1093/cerco​r/bhh20​1 (2005).

	 66.	 Schneider, W. & Shiffrin, R. M. Controlled and automatic human information processing: I. Detection, search, and attention. 
Psychol. Rev. 84, 1–66. https​://doi.org/10.1037/0033-295x.84.1.1 (1977).

	 67.	 Palmeri, T. J. Exemplar similarity and the development of automaticity. J. Exp. Psychol. 23, 324–354 (1997).
	 68.	 Anderson, B. A. Controlled information processing, automaticity, and the burden of proof. Psychon. Bull. Rev. https​://doi.

org/10.3758/s1342​3-017-1412-7 (2017).
	 69.	 Moors, A. & De Houwer, J. Automaticity: a theoretical and conceptual analysis. Psychol. Bull. 132, 297–326. https​://doi.

org/10.1037/0033-2909.132.2.297 (2006).
	 70.	 Flor, R. & Dooley, K. The dynamics of learning to automaticity. Noetic J. 2, 168–173 (1998).
	 71.	 Dekeyser, R. M. Cognition and Second Language Instruction 225–251 (Cambridge University Press, Cambridge, 2001).
	 72.	 Singer, R. N. Preperformance state, routines and automaticity: What does it take to realize expertise in self-paced events?. J. 

Sport Exerc. Psychol. 24, 359–375 (2002).
	 73.	 Janacsek, K., Fiser, J. & Nemeth, D. The best time to acquire new skills: age-related differences in implicit sequence learning 

across the human lifespan. Dev. Sci. 15, 496–505. https​://doi.org/10.1111/j.1467-7687.2012.01150​.x (2012).
	 74.	 Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral 

control. Nat. Neurosci. 8, 1704–1711. https​://doi.org/10.1038/nn156​0 (2005).
	 75.	 Segalowitz, S. J., Segalowitz, N. S. & Wood, A. G. Assessing the development of automaticity in second language word recogni-

tion. Appl. Psycholinguist. 19, 53–67 (1998).
	 76.	 Segalowitz, N. S. & Segalowitz, S. J. Skilled performance, practice, and the differentiation of speed-up from automatization 

effects: evidence from second language word recognition. Appl. Psycholinguist. 14, 369–369 (1993).
	 77.	 Favreau, M. & Segalowitz, N. Automatic and controlled processes in the first- and second-language reading of fluent bilinguals. 

Mem. Cogn. 11, 565–574. https​://doi.org/10.3758/BF031​98281​ (1983).
	 78.	 Bezdjian, S., Baker, L. A., Lozano, D. I. & Raine, A. Assessing inattention and impulsivity in children during the Go/NoGo task. 

Br. J. Dev. Psychol. 27, 365–383. https​://doi.org/10.1348/02615​1008X​31491​9 (2009).
	 79.	 Barkley, R. A. The ecological validity of laboratory and analogue assessment methods of ADHD symptoms. J. Abnorm. Child 

Psychol. 19, 149–178 (1991).
	 80.	 Halperin, J. M., Wolf, L., Greenblatt, E. R. & Young, G. Subtype analysis of commission errors on the continuous performance 

test in children. Dev. Neuropsychol. 7, 207–217 (1991).
	 81.	 Diamond, A. Executive functions. Annu. Rev. Psychol. 64, 135–168. https​://doi.org/10.1146/annur​ev-psych​-11301​1-14375​0 

(2013).
	 82.	 Schneider, D. W. Alertness and cognitive control: Is there a spatial attention constraint?. Attent. Percept. Psychophys. 81, 119–136 

(2019).
	 83.	 Schneider, D. W. Alertness and cognitive control: interactions in the spatial Stroop task. Attent. Percept. Psychophys. 1, 1–14 

(2020).
	 84.	 Barnes, K. A. et al. Intact implicit learning of spatial context and temporal sequences in childhood autism spectrum disorder. 

Neuropsychology 22, 563 (2008).
	 85.	 Cohen, A., Ivry, R. I. & Keele, S. W. Attention and structure in sequence learning. J. Exp. Psychol. Learn. Mem. Cogn. 16, 17 

(1990).
	 86.	 Jiang, Y. & Chun, M. M. Selective attention modulates implicit learning. Q. J. Exp. Psychol. Sect. A 54, 1105–1124 (2001).
	 87.	 Shanks, D. R., Rowland, L. A. & Ranger, M. S. Attentional load and implicit sequence learning. Psychol. Res. 69, 369–382. https​

://doi.org/10.1007/s0042​6-004-0211-8 (2005).
	 88.	 Ravizza, S. M. & Carter, C. S. Shifting set about task switching: behavioral and neural evidence for distinct forms of cognitive 

flexibility. Neuropsychologia 46, 2924–2935. https​://doi.org/10.1016/j.neuro​psych​ologi​a.2008.06.006 (2008).
	 89.	 Monchi, O., Petrides, M., Petre, V., Worsley, K. & Dagher, A. Wisconsin Card Sorting revisited: distinct neural circuits participat-

ing in different stages of the task identified by event-related functional magnetic resonance imaging. J. Neurosci. 21, 7733–7741 
(2001).

	 90.	 Berg, E. A. A simple objective technique for measuring flexibility in thinking. J. Gen. Psychol. 39, 15–22. https​://doi.
org/10.1080/00221​309.1948.99181​59 (1948).

	 91.	 Grant, D. A. & Berg, E. A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type 
card-sorting problem. J. Exp. Psychol. 38, 404 (1948).

	 92.	 Puente, A. Wisconsin card sorting test. Test Crit. 4, 677–682 (1985).
	 93.	 Martini, M., Furtner, M. R. & Sachse, P. Working memory and its relation to deterministic sequence learning. PLoS ONE 8, 

e56166. https​://doi.org/10.1371/journ​al.pone.00561​66 (2013).
	 94.	 Frensch, P. A. & Miner, C. S. Effects of presentation rate and individual differences in short-term memory capacity on an indirect 

measure of serial learning. Mem. Cogn. 22, 95–110 (1994).
	 95.	 Dutilh, G., Wagenmakers, E. J., Visser, I. & van der Maas, H. L. A phase transition model for the speed-accuracy trade-off in 

response time experiments. Cogn. Sci. 35, 211–250 (2011).
	 96.	 Rinkenauer, G., Osman, A., Ulrich, R., Müller-Gethmann, H. & Mattes, S. On the locus of speed-accuracy trade-off in reaction 

time: inferences from the lateralized readiness potential. J. Exp. Psychol. Gen. 133, 261 (2004).
	 97.	 Wickelgren, W. A. Speed-accuracy tradeoff and information processing dynamics. Acta Physiol. 41, 67–85 (1977).
	 98.	 Heitz, R. P. The speed-accuracy tradeoff: history, physiology, methodology, and behavior. Front. Neurosci. https​://doi.org/10.3389/

fnins​.2014.00150​ (2014).
	 99.	 Simor, P. et al. Deconstructing procedural memory: different learning trajectories and consolidation of sequence and statistical 

learning. Front. Psychol. https​://doi.org/10.3389/fpsyg​.2018.02708​ (2019).
	100.	 Török, B., Janacsek, K., Nagy, D. G., Orbán, G. & Nemeth, D. Measuring and filtering reactive inhibition is essential for assessing 

serial decision making and learning. J. Exp. Psychol. Gen. 146, 529 (2017).
	101.	 Underwood, B. J. Speed of learning and amount retained: a consideration of methodology. J Psychol. Bull. 51, 276 (1954).
	102.	 Ball, C. Start Right: The Importance of Early Learning (ERIC, London, 1994).
	103.	 McKeown, M. G., Beck, I. & Sandora, C. Direct and rich vocabulary instruction needs to start early. Vocabul. Inst. Res. Pract. 2, 

17–33 (2012).
	104.	 PASS 2020 Power Analysis and Sample Size Software, <ncss.com/software/pass> (2020).
	105.	 Benton, A. L. Differential behavioral effects in frontal lobe disease. Neuropsychologia 6, 53–60 (1968).
	106.	 Schwartz, S., Baldo, J., Graves, R. E. & Brugger, P. Pervasive influence of semantics in letter and category fluency: a multidimen-

sional approach. Brain Lang. 87, 400–411 (2003).
	107.	 Baldo, J. V., Schwartz, S., Wilkins, D. & Dronkers, N. F. Role of frontal versus temporal cortex in verbal fluency as revealed by 

voxel-based lesion symptom mapping. J. Int. Neuropsychol. Soc. 12, 896–900 (2006).
	108.	 Engle, R. W., Tuholski, S. W., Laughlin, J. E. & Conway, A. R. Working memory, short-term memory, and general fluid intel-

ligence: a latent-variable approach. J. Exp. Psychol. Gen. 128, 309 (1999).
	109.	 Kessels, R. P., van Zandvoort, M. J., Postma, A., Kappelle, L. J. & de Haan, E. H. The corsi block-tapping task: standardization 

and normative data. Appl. Neuropsychol. 7, 252–258. https​://doi.org/10.1207/S1532​4826A​N0704​_8 (2000).

https://doi.org/10.1093/cercor/bhh201
https://doi.org/10.1037/0033-295x.84.1.1
https://doi.org/10.3758/s13423-017-1412-7
https://doi.org/10.3758/s13423-017-1412-7
https://doi.org/10.1037/0033-2909.132.2.297
https://doi.org/10.1037/0033-2909.132.2.297
https://doi.org/10.1111/j.1467-7687.2012.01150.x
https://doi.org/10.1038/nn1560
https://doi.org/10.3758/BF03198281
https://doi.org/10.1348/026151008X314919
https://doi.org/10.1146/annurev-psych-113011-143750
https://doi.org/10.1007/s00426-004-0211-8
https://doi.org/10.1007/s00426-004-0211-8
https://doi.org/10.1016/j.neuropsychologia.2008.06.006
https://doi.org/10.1080/00221309.1948.9918159
https://doi.org/10.1080/00221309.1948.9918159
https://doi.org/10.1371/journal.pone.0056166
https://doi.org/10.3389/fnins.2014.00150
https://doi.org/10.3389/fnins.2014.00150
https://doi.org/10.3389/fpsyg.2018.02708
https://doi.org/10.1207/S15324826AN0704_8


13

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18843  | https://doi.org/10.1038/s41598-020-75157-8

www.nature.com/scientificreports/

	110.	 Afsaneh, Z. et al. Assessment of Selective Attention with CSCWT (Computerized Stroop Color-Word Test) among Children 
and Adults. Online Submission (2012).

	111.	 Spreen, O. & Strauss, E. Administration, Norms, and Commentary (Oxford University Press, Oxford, 1998).
	112.	 Schneider, W., Eschman, A. & Zuccolotto, A. E-Prime: User’s Guide (Psychology Software Incorporated, New York, 2002).
	113.	 Higham, D. J. & Higham, N. J. MATLAB Guide (SIAM, London, 2016).
	114.	 Stoet, G. PsyToolkit: a software package for programming psychological experiments using Linux. Behav. Res. Methods 42, 

1096–1104 (2010).
	115.	 Stoet, G. PsyToolkit: a novel web-based method for running online questionnaires and reaction-time experiments. Teach. Psychol. 

44, 24–31 (2017).
	116.	 Howard, D. V. et al. Implicit sequence learning: effects of level of structure, adult age, and extended practice. Psychol. Aging 19, 

79 (2004).
	117.	 Van Rossum, G. & Drake Jr, F. L. Python tutorial. Vol. 620 (Centrum voor Wiskunde en Informatica, Amsterdam, 1995).
	118.	 Akaike, H. A new look at the statistical model identification. J IEEE Trans. Autom. Control 19, 716–723 (1974).
	119.	 Farrell, S. & Lewandowsky, S. Computational Modeling of Cognition and Behavior 297–299 (Cambridge University Press, Cam-

bridge, 2018).
	120.	 Byrd, R. H., Lu, P., Nocedal, J. & Zhu, C. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 

16, 1190–1208 (1995).
	121.	 Zhu, C., Byrd, R. H., Lu, P. & Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained 

optimization. ACM Trans. Math. Softw. (TOMS) 23, 550–560 (1997).
	122.	 Kendall, M. G. The treatment of ties in ranking problems. Biometrika 33, 239–251 (1945).
	123.	 Kendall, M. G. A new measure of rank correlation. Biometrika 30, 81–93 (1938).

Acknowledgements
We thank Shameem Wagner for proofreading in English. This research was supported by the Basic Science 
Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Educa-
tion (NRF-2019M3C7A1031995, NRF-2020R1A2C2099568, NRF-2020R1A6A1A03040516), and the Bio and 
Medical Technology Development Program of the NRF funded by MSIT (2017M3A9G8084463).

Author contributions
J.P. and H.J. designed the study; J.P., H.Y., and T.Y. conducted the experiment; J.P. and M.S. analyzed data; J.P. 
and H.J. wrote the manuscript; H.J. supervised the study.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https​://doi.org/10.1038/s4159​8-020-75157​-8.

Correspondence and requests for materials should be addressed to H.-A.J.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-75157-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Potential and efficiency of statistical learning closely intertwined with individuals’ executive functions: a mathematical modeling study
	Results
	Descriptive statistics of data from the ASRT task. 
	Effect of SL and effect of type through multiple linear regressions. 
	Mathematical modeling of SL scores. 
	Correlation analysis. 

	Discussion
	A comprehensive analysis of SL with potential and efficiency through mathematical modeling. 
	Opposing roles of inhibition between the potential of SL and the efficiency of SL. 
	A positive relation between set-shifting and the efficiency of SL. 
	A positive relation between visuo-spatial working memory and the potential of SL. 
	The possible potential–efficiency tradeoff in SL. 
	Limitations. 

	Conclusion
	Methods
	Participants. 
	Procedure. 
	Data analysis. 
	Investigation of participants’ performances in the ASRT task. 
	Modeling SL scores. 
	Correlation analysis. 


	References
	Acknowledgements


