53 research outputs found

    Quantitative Method for Network Security Situation Based on Attack Prediction

    Get PDF
    Multistep attack prediction and security situation awareness are two big challenges for network administrators because future is generally unknown. In recent years, many investigations have been made. However, they are not sufficient. To improve the comprehensiveness of prediction, in this paper, we quantitatively convert attack threat into security situation. Actually, two algorithms are proposed, namely, attack prediction algorithm using dynamic Bayesian attack graph and security situation quantification algorithm based on attack prediction. The first algorithm aims to provide more abundant information of future attack behaviors by simulating incremental network penetration. Through timely evaluating the attack capacity of intruder and defense strategies of defender, the likely attack goal, path, and probability and time-cost are predicted dynamically along with the ongoing security events. Furthermore, in combination with the common vulnerability scoring system (CVSS) metric and network assets information, the second algorithm quantifies the concealed attack threat into the surfaced security risk from two levels: host and network. Examples show that our method is feasible and flexible for the attack-defense adversarial network environment, which benefits the administrator to infer the security situation in advance and prerepair the critical compromised hosts to maintain normal network communication

    Learning Domain-Aware Detection Head with Prompt Tuning

    Full text link
    Domain adaptive object detection (DAOD) aims to generalize detectors trained on an annotated source domain to an unlabelled target domain. However, existing methods focus on reducing the domain bias of the detection backbone by inferring a discriminative visual encoder, while ignoring the domain bias in the detection head. Inspired by the high generalization of vision-language models (VLMs), applying a VLM as the robust detection backbone following a domain-aware detection head is a reasonable way to learn the discriminative detector for each domain, rather than reducing the domain bias in traditional methods. To achieve the above issue, we thus propose a novel DAOD framework named Domain-Aware detection head with Prompt tuning (DA-Pro), which applies the learnable domain-adaptive prompt to generate the dynamic detection head for each domain. Formally, the domain-adaptive prompt consists of the domain-invariant tokens, domain-specific tokens, and the domain-related textual description along with the class label. Furthermore, two constraints between the source and target domains are applied to ensure that the domain-adaptive prompt can capture the domains-shared and domain-specific knowledge. A prompt ensemble strategy is also proposed to reduce the effect of prompt disturbance. Comprehensive experiments over multiple cross-domain adaptation tasks demonstrate that using the domain-adaptive prompt can produce an effectively domain-related detection head for boosting domain-adaptive object detection

    Evaluation Method of Distribution Network Resilience Focusing on Critical Loads

    Get PDF

    Pushing the Limits of Machine Design: Automated CPU Design with AI

    Full text link
    Design activity -- constructing an artifact description satisfying given goals and constraints -- distinguishes humanity from other animals and traditional machines, and endowing machines with design abilities at the human level or beyond has been a long-term pursuit. Though machines have already demonstrated their abilities in designing new materials, proteins, and computer programs with advanced artificial intelligence (AI) techniques, the search space for designing such objects is relatively small, and thus, "Can machines design like humans?" remains an open question. To explore the boundary of machine design, here we present a new AI approach to automatically design a central processing unit (CPU), the brain of a computer, and one of the world's most intricate devices humanity have ever designed. This approach generates the circuit logic, which is represented by a graph structure called Binary Speculation Diagram (BSD), of the CPU design from only external input-output observations instead of formal program code. During the generation of BSD, Monte Carlo-based expansion and the distance of Boolean functions are used to guarantee accuracy and efficiency, respectively. By efficiently exploring a search space of unprecedented size 10^{10^{540}}, which is the largest one of all machine-designed objects to our best knowledge, and thus pushing the limits of machine design, our approach generates an industrial-scale RISC-V CPU within only 5 hours. The taped-out CPU successfully runs the Linux operating system and performs comparably against the human-designed Intel 80486SX CPU. In addition to learning the world's first CPU only from input-output observations, which may reform the semiconductor industry by significantly reducing the design cycle, our approach even autonomously discovers human knowledge of the von Neumann architecture.Comment: 28 page

    Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information

    Get PDF
    Motivation: Reconstruction of gene regulatory networks (GRNs), which explicitly represent the causality of developmental or regulatory process, is of utmost interest and has become a challenging computational problem for understanding the complex regulatory mechanisms in cellular systems. However, all existing methods of inferring GRNs from gene expression profiles have their strengths and weaknesses. In particular, many properties of GRNs, such as topology sparseness and non-linear dependence, are generally in regulation mechanism but seldom are taken into account simultaneously in one computational method.Results: In this work, we present a novel method for inferring GRNs from gene expression data considering the non-linear dependence and topological structure of GRNs by employing path consistency algorithm (PCA) based on conditional mutual information (CMI). In this algorithm, the conditional dependence between a pair of genes is represented by the CMI between them. With the general hypothesis of Gaussian distribution underlying gene expression data, CMI between a pair of genes is computed by a concise formula involving the covariance matrices of the related gene expression profiles. The method is validated on the benchmark GRNs from the DREAM challenge and the widely used SOS DNA repair network in Escherichia coli. The cross-validation results confirmed the effectiveness of our method (PCA-CMI), which outperforms significantly other previous methods. Besides its high accuracy, our method is able to distinguish direct (or causal) interactions from indirect associations

    The suppression of hydrodynamic noise from underwater cavities by the change of back wall chamfer

    No full text
    When underwater vehicles are sailing, high hydrodynamic noise will be generated through the opening cavities due to the interaction of the surface and the fluids. In the paper, we had tested different forms of back wall chamfer by numerical calculation based on the method of large eddy simulation, to control the impact of the eddy and break the flow at the trailing edge of the cavity, which is with the dimension of 100mm wide, 120mm high and 100mm long. The angle and shape of the trailing edge chamfer are changed to control the flow of the cavity. We had also investigated the effect of hydrodynamic noise suppression through the simulation, which is based on the method of Lighthill’s acoustic analogy. The results show that the change of back wall chamfer can stabilize the movement of the eddies inside the cavity and reduce the fluctuation pressure at the trailing edge of the cavity. The suppression of flow-induced noise can be up to 5 dB, if the back-wall chamfer is with the airfoil surface and the angle of back wall chamfer is properly designed

    Enrichment Evaluation of Heavy Metals from Stormwater Runoff to Soil and Shrubs in Bioretention Facilities

    No full text
    Bioretention facilities with different inflow concentrations, growing media and plants were examined to determine whether the soil in these facilities was polluted with heavy metals and whether runoff had obvious toxic effects on plants. Using Beijing soil background value as the standard, the soils were evaluated by bioaccumulation index and single factor index. The results show that stormwater runoff containing Cu caused slight pollution in soils, and stormwater runoff containing Zn and Pb was not polluted. Nemerow comprehensive index evaluation revealed that the heavy metals content in the facilities containing vermiculite (a yellow or brown mineral found as an alteration product of mica and other minerals, used for insulation or as a moisture-retentive medium for growing plants) and perlite (a form of obsidian characterized by spherulites formed by cracking of the volcanic glass during cooling, used as insulation or in plant growth media) were higher than the standard. High influent concentration caused significantly higher heavy metals content in plants. While Pb accumulation in the two studied plants was the highest, Cu and Zn accumulation, which are essential for plant growth, was relatively low. The contents of the three heavy metals in the studied plants also exceeded their corresponding critical values

    Enrichment Evaluation of Heavy Metals from Stormwater Runoff to Soil and Shrubs in Bioretention Facilities

    No full text
    Bioretention facilities with different inflow concentrations, growing media and plants were examined to determine whether the soil in these facilities was polluted with heavy metals and whether runoff had obvious toxic effects on plants. Using Beijing soil background value as the standard, the soils were evaluated by bioaccumulation index and single factor index. The results show that stormwater runoff containing Cu caused slight pollution in soils, and stormwater runoff containing Zn and Pb was not polluted. Nemerow comprehensive index evaluation revealed that the heavy metals content in the facilities containing vermiculite (a yellow or brown mineral found as an alteration product of mica and other minerals, used for insulation or as a moisture-retentive medium for growing plants) and perlite (a form of obsidian characterized by spherulites formed by cracking of the volcanic glass during cooling, used as insulation or in plant growth media) were higher than the standard. High influent concentration caused significantly higher heavy metals content in plants. While Pb accumulation in the two studied plants was the highest, Cu and Zn accumulation, which are essential for plant growth, was relatively low. The contents of the three heavy metals in the studied plants also exceeded their corresponding critical values
    • …
    corecore