171 research outputs found

    Helping community-based students on a final consolidation placement make the transition to registered practice.

    Get PDF
    The pressure of role transition on new nurse registrants has affected recruitment and retention, which, along with an ageing workforce, has resulted in a global shortage of nurses that is now reaching crisis point. This article examines and discusses what can be done to attract and prepare the future workforce in the community, focusing on helping students to make the transition to registered practice that begins during their final consolidation of practice placement. There is currently limited evidence on the effectiveness of how community placement teams prepare finalist students for registered practice and this could be seen as an opportunity lost given the urgent need to recruit more registered nurses to work in primary care. Recommendations for enhancing this crucial stage of the student journey are made, and a case for the need to know more from students about how they experience their final practice placement when allocated to a community setting is presented

    Circadian Clock Gene Expression in the Coral Favia fragum over Diel and Lunar Reproductive Cycles

    Get PDF
    Natural light cycles synchronize behavioral and physiological cycles over varying time periods in both plants and animals. Many scleractinian corals exhibit diel cycles of polyp expansion and contraction entrained by diel sunlight patterns, and monthly cycles of spawning or planulation that correspond to lunar moonlight cycles. The molecular mechanisms for regulating such cycles are poorly understood. In this study, we identified four molecular clock genes (cry1, cry2, clock and cycle) in the scleractinian coral, Favia fragum, and investigated patterns of gene expression hypothesized to be involved in the corals' diel polyp behavior and lunar reproductive cycles. Using quantitative PCR, we measured fluctuations in expression of these clock genes over both diel and monthly spawning timeframes. Additionally, we assayed gene expression and polyp expansion-contraction behavior in experimental corals in normal light:dark (control) or constant dark treatments. Well-defined and reproducible diel patterns in cry1, cry2, and clock expression were observed in both field-collected and the experimental colonies maintained under control light:dark conditions, but no pattern was observed for cycle. Colonies in the control light:dark treatment also displayed diel rhythms of tentacle expansion and contraction. Experimental colonies in the constant dark treatment lost diel patterns in cry1, cry2, and clock expression and displayed a diminished and less synchronous pattern of tentacle expansion and contraction. We observed no pattern in cry1, cry2, clock, or cycle expression correlated with monthly spawning events suggesting these genes are not involved in the entrainment of reproductive cycles to lunar light cycles in F. fragum. Our results suggest a molecular clock mechanism, potentially similar to that in described in fruit flies, exists within F. fragum

    The Complete Mitochondrial Genomes of Six Heterodont Bivalves (Tellinoidea and Solenoidea): Variable Gene Arrangements and Phylogenetic Implications

    Get PDF
    BACKGROUND: Taxonomy and phylogeny of subclass Heterodonta including Tellinoidea are long-debated issues and a complete agreement has not been reached yet. Mitochondrial (mt) genomes have been proved to be a powerful tool in resolving phylogenetic relationship. However, to date, only ten complete mitochondrial genomes of Heterodonta, which is by far the most diverse major group of Bivalvia, have been determined. In this paper, we newly sequenced the complete mt genomes of six species belonging to Heterodonta in order to resolve some problematical relationships among this subclass. PRINCIPAL FINDINGS: The complete mt genomes of six species vary in size from 16,352 bp to 18,182. Hairpin-like secondary structures are found in the largest non-coding regions of six freshly sequenced mt genomes, five of which contain tandem repeats. It is noteworthy that two species belonging to the same genus show different gene arrangements with three translocations. The phylogenetic analysis of Heterodonta indicates that Sinonovacula constricta, distant from the Solecurtidae belonging to Tellinoidea, is as a sister group with Solen grandis of family Solenidae. Besides, all five species of Tellinoidea cluster together, while Sanguinolaria diphos has closer relationship with Solecurtus divaricatus, Moerella iridescens and Semele scaba rather than with Sanguinolaria olivacea. CONCLUSIONS/SIGNIFICANCE: By comparative study of gene order rearrangements and phylogenetic relationships of the five species belonging to Tellinoidea, our results support that comparisons of mt gene order rearrangements, to some extent, are a useful tool for phylogenetic studies. Based on phylogenetic analyses of multiple protein-coding genes, we prefer classifying the genus Sinonovacula within the superfamily Solenoidea and not the superfamily Tellinoidea. Besides, both gene order and sequence data agree that Sanguinolaria (Psammobiidae) is not monophyletic. Nevertheless, more studies based on more mt genomes via combination of gene order and phylogenetic analysis are needed to further understand the phylogenetic relationships in subclass Heterodonta

    The behaviour of giant clams (Bivalvia: Cardiidae: Tridacninae)

    Get PDF

    Semi-arid zone caves:Evaporation and hydrological controls on δ<sup>18</sup>O drip water composition and implications for speleothem paleoclimate reconstructions

    Get PDF
    Oxygen isotope ratios in speleothems may be affected by external processes that are independent of climate, such as karst hydrology and kinetic fractionation. Consequently, there has been a shift towards characterising and understanding these processes through cave monitoring studies, particularly focussing on temperate zones where precipitation exceeds evapotranspiration. Here, we investigate oxygen isotope systematics at Wellington Caves in semi-arid, SE Australia, where evapotranspiration exceeds precipitation. We use a novel D2O isotopic tracer in a series of artificial irrigations, supplemented by pre-irrigation data comprised four years of drip monitoring and three years of stable isotope analysis of both drip waters and rainfall. This study reveals that: (1) evaporative processes in the unsaturated zone dominate the isotopic composition of drip waters; (2) significant soil zone ‘wetting up’ is required to overcome soil moisture deficits in order to achieve infiltration, which is highly dependent on antecedent hydro-climatic conditions; (3) lateral flow, preferential flow and sorption in the soil zone are important in redistributing subsurface zone water; (4) isotopic breakthrough curves suggest clear evidence of piston-flow at some drip sites where an older front of water discharged prior to artificial irrigation water; and (5) water residence times in a shallow vadose zone (<2 m) are highly variable and can exceed six months. Oxygen isotope speleothem records from semi-arid regions are therefore more likely to contain archives of alternating paleo-aridity and paleo-recharge, rather than paleo-rainfall e.g. the amount effect or mean annual. Speleothem-forming drip waters will be dominated by evaporative enrichment, up to ∼3‰ in the context of this study, relative to precipitation-weighted mean annual rainfall. The oxygen isotope variability of such coeval records may further be influenced by flow path and storage in the unsaturated zone that is not only drip specific but also influenced by internal cave climatic conditions, which may vary spatially in the cave

    Rewarding Preceptors

    No full text
    • …
    corecore