10 research outputs found

    Geological and oceanographic controls on seabed fluid escape structures in the northern Zhongjiannan Basin, South China Sea

    No full text
    Mega-pockmarks, which can reach a few kilometers in width and a few hundred meters in depth, and associated fluid escape features in the Northern Zhongjiannan Basin, South China Sea, have received much attention in the recent years, due to their large variety of morphologies and sizes. In this work, an integrated interpretation of detailed multibeam bathymetry, conventional multi-channel seismic reflection and seismic oceanography sections covering the northern Zhongjiannan Basin, South China Sea, are used to image the seafloor morphology, the subsurface geology and the water column, in order to better understand the geological and oceanographic controls on the formation and evolution of the widespread fluid escape features in this region. Regional uplift and volcanism took place in this area near the Palaeogene–Neogene boundary and, during the Neogene–Quaternary post-rift thermal subsidence period, differential subsidence and diapirism deformed the overlying kilometer-scale successions. Mainly after the Miocene, focused flow of fluids originated at depth occurred along gas pipes, polygonal faults, tapered reflectors and faults into the shallow sediments, resulting in intense fluid blowouts and complex fluid escape structures on the seafloor. Our results show that elongated pockmarks, pockmark gullies and gullies in the northern slope are generally controlled by underlying buried channels and gullies. However, pockmark gullies and gullies in the southern slope are controlled by gravity sliding/slumping, along with crescent pockmarks developing parallel to water depth contours. To varying degrees, intense fluid escape activities associated with mud diapirism and gas escape in the study area resulted in mud extrusion and the formation of mud volcanoes, complex seabed morphologies and irregular pockmarks. Mega-pockmarks, collapse structures and blind valleys have formed at the apexes of tectonic uplifts related to volcanism and above basement highs, which suggests that these processes played a role in creating pathways for fluid escape. Bottom currents associated with the South China Sea Western Boundary Current, imaged here for the first time with the seismic oceanographic method, mainly flow to the south, and erode the seafloor, making pockmark walls and slopes of gullies and channels in the north steeper than those in the south. Some fluid escape structures, such as the mega-pockmarks and pockmark gullies, are buried by sediment transported by the bottom currents. Turbidity currents flowing downslope along the long pockmark gullies also erode the seafloor and make the NW slopes of the mud volcanoes less steep than those in the SE. Eddies imaged by the seismic sections may also play a role in transporting sediment to the deep sea in this area. Some of the reported fluid escape structures are still active, as indicated by the fluid pathways that reach the seafloor and plumes in the water column imaged by the seismic sections.publishe

    Circular RNA circ_0003028 contributes to tumorigenesis by regulating GOT2 via miR-1298-5p in non-small cell lung cancer

    No full text
    Non-small cell lung cancer (NSCLC) is a common malignant tumor, with high morbidity and mortality. Circular RNA (circRNA) circ_0003028 was reported to be upregulated in NSCLC. This study is designed to explore the role and mechanism of circ_0003028 on NSCLC progression. In this work, circ_0003028, microRNA-1298-5p (miR-1298-5p), and glutamic oxaloacetic transaminase 2 (GOT2) level were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The localization of circ_0003028 was analyzed by subcellular fractionation assay. Cell proliferation, colony number, cell cycle progression, apoptosis, migration, invasion, and angiogenesis were measured by Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, transwell, and tube formation assays. Protein levels of Beclin1, light chain 3 (LC3)-II/LC3-I, GOT2, proliferating cell nuclear antigen (PCNA) were examined by western blot assay. The binding relationship between miR-1298-5p and circ_0003028 or GOT2 was predicted by circular RNA Interactome or starbase and then verified by dual-luciferase reporter, RNA Immunoprecipitation (RIP), and RNA pull-down assays. The biological role of circ_0003028 on NSCLC tumor growth was examined by the xenograft tumor model in vivo. We reported that circ_0003028 and GOT2 were upregulated, and miR-1298-5p was decreased in NSCLC tissues and cells. Moreover, circ_0003028 knockdown curbed cell proliferative ability, migration, invasion, angiogenesis, and facilitate apoptosis and autophagy in NSCLC cells in vitro. Mechanical analysis discovered that circ_0003028 regulated GOT2 expression by sponging miR-1298-5p. Circ_0003028 silencing hindered the cell growth of NSCLC in vivo. Taken together, circ_0003028 knockdown could suppress NSCLC progression partly by regulating the miR-1298-5p/GOT2 axis, providing an underlying therapeutic target for NSCLC

    Morphologies, classification and genesis of pockmarks, mud volcanoes and associated fluid escape features in the northern Zhongjiannan Basin, South China Sea

    No full text
    Based on new high-resolution multi-beam bathymetry and multichannel seismic reflection data, two new groups of numerous pockmarks and mud volcanoes were discovered in the northern Zhongjiannan Basin at water depths between 600 and 1400 m. Individual pockmarks are circular, elliptical, crescent-shaped or elongated, with diameters ranging from several hundreds to thousands of meters and tens or hundreds of meters in depth, and they often form groups or strings. Crescent pockmarks, approximately 500–1500 m wide in cross-section and 50–150 m deep, occur widely in the southern study area, both as individual features and in groups or curvilinear chains, and they are more widespread and unique in this area than anywhere else in the world. Conical mud volcanoes, mostly with kilometer-wide diameters and ca. 100 m high, mainly develop in the northern study area as individual features or in groups. Seismic data show that the observed pockmarks are associated with different kinds of fluid escape structures and conduits, such as gas chimneys, diapirs, zones of acoustic blanking, acoustic turbidity and enhanced reflections, inclined faults, small fractures and polygonal faults. The mapped mud volcanoes appear to be fed from deep diapirs along two main conduit types: the conventional conduits with downward tapering cones and another other conduit type with a narrow conduit in the lower half and emanative leakage passages in the upper half. Various types of pockmarks are found and a comprehensive pockmark classification scheme is proposed, according to: (a) their shape in plan view, which includes circular, elliptical, crescent, comet-shape, elongated and irregular; (b) their magnitude, which includes small, normal, giant and mega-pockmarks; and (c) their composite pattern, which includes composite pockmarks, pockmark strings and pockmark groups. For the genesis of the crescent pockmark (strings), a 5-stage speculative formation model is proposed, implying possible controlling factors of gravity sliding/slumping, fluid escape activity and sandbodies intrusion. Seismic data suggest that the mud volcanoes have likely undergone two episodes of evolution, which include a widespread drastic formation of mud volcanoes with dome-like structures, a wide range of seepage occurrences and the formation of complex sediments in the first stage, and the appearance of pockmarks, conical mud volcanoes (groups), and the formation of deformed, filled or broken buried complex sediments by continuous fluid flow processes during stage 2, in the Pliocene and the Quaternary. Pockmark gullies are extensively found along the slope, due to the interaction of slope failure and fluid escape processes. The Cenozoic sedimentary cover is thin in the Northern Zhongjiannan basin, which evolved from a Late Cretaceous or Palaeogene–Oligocene rift to the Neogene–Quaternary post-rift thermal subsidence, and therefore intense deep thermogenic fluid flow can easily affect the soft Cenozoic sediments, produce complex sediment deformation, and form numerous fluid flow structures at the seafloor, in particular pockmarks and mud volcanoes that dominantly emerged during the period of post-rift thermal subsidence and neotectonic movement since ca. 5.5 Ma

    Hydrogeochemical Study of Hot Springs along the Tingri—Nyima Rift: Relationship between Fluids and Earthquakes

    No full text
    Studying the hydrogeochemical characteristics of hot springs provides essential geochemical information for monitoring earthquake precursors and understanding the relationship between fluids, fractures, and earthquakes. This paper investigates the hydrogeochemical characteristics of hot springs along the Tingri–Nyima Rift (TNR) in southern Tibet, a seismically active zone at the collision front of the Indian and Asian-European plates. The major elements, hydrogen, and oxygen isotopes of seven thermal springs were analyzed from July 2019 to September 2021. The findings indicate that Mount Everest’s meteoric water, which has a recharge elevation of roughly 7.5–8.4 km, is the main source of recharge for the hot springs. The water samples have two main hydrochemical types: HCO3-Na and Cl-Na. The temperature of the geothermal reservoir is between 46.5 and 225.4 °C, while the circulation depth is between 1.2 and 5.0 km based on silica-enthalpy mixing models and traditional geothermometers. Furthermore, continuous measurements of major anions and cations at the Yundong Spring (T06) near Mount Everest reveal short-term (8 days) seismic precursor anomalies of hydrochemical compositions before an ML4.7 earthquake 64.36 km away from T06. Our study suggests that seismicity in the northern section of the TNR is controlled by both hydrothermal activity and tectonic activity, while seismicity in the southern section is mainly influenced by tectonic activity. In addition to magnitude and distance from the epicenter, geological forces from deep, large fissures also affect how hot springs react to seismic occurrences. A fluid circulation model is established in order to explain the process of groundwater circulation migration. The continuous hydrochemical monitoring of hot springs near Everest is critical for studying the coupling between hot springs, fractures, and earthquakes, as well as monitoring information on earthquake precursory anomalies near Everest

    Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349

    Get PDF
    Combined analyses of deep tow magnetic anomalies and International Ocean Discovery Program Expedition 349 cores show that initial seafloor spreading started around 33 Ma in the northeastern South China Sea (SCS), but varied slightly by 1-2 Myr along the northern continent-ocean boundary (COB). A southward ridge jump of ∼20 km occurred around 23.6 Ma in the East Subbasin; this timing also slightly varied along the ridge and was coeval to the onset of seafloor spreading in the Southwest Subbasin, which propagated for about 400 km southwestward from ∼23.6 to ∼21.5 Ma. The terminal age of seafloor spreading is ∼15 Ma in the East Subbasin and ∼16 Ma in the Southwest Subbasin. The full spreading rate in the East Subbasin varied largely from ∼20 to ∼80 km/Myr, but mostly decreased with time except for the period between ∼26.0 Ma and the ridge jump (∼23.6 Ma), within which the rate was the fastest at ∼70 km/Myr on average. The spreading rates are not correlated, in most cases, to magnetic anomaly amplitudes that reflect basement magnetization contrasts. Shipboard magnetic measurements reveal at least one magnetic reversal in the top 100 m of basaltic layers, in addition to large vertical intensity variations. These complexities are caused by late-stage lava flows that are magnetized in a different polarity from the primary basaltic layer emplaced during the main phase of crustal accretion. Deep tow magnetic modeling also reveals this smearing in basement magnetizations by incorporating a contamination coefficient of 0.5, which partly alleviates the problem of assuming a magnetic blocking model of constant thickness and uniform magnetization. The primary contribution to magnetic anomalies of the SCS is not in the top 100 m of the igneous basement.26 page(s
    corecore