1,967 research outputs found
Performance characteristics and estimation of measurement uncertainty of two plating procedures for Listeria monocytogenes enumeration in chicken meat
The objectives highlighted in the present study were to determine the estimates of measurement uncertainty associated with PALCAM and CHROMagar TM Listeria media, to compare the efficacy between both media in relation to their measurement uncertainties. In addition, this study was carried out to assess the performance characteristics of spread and spiral plating procedures based on the comparison of Listeria monocytogenes enumeration between PALCAM and CHROMagar TM Listeria media. This work involved pure culture experiment, artificially contaminated samples experiment and naturally contaminated samples experiment. In pure culture experiment, PALCAM performance was relatively inferior to CHROMagar TM Listeria medium for both plating procedures. From the artificially contaminated samples, the results revealed that the values of repeatability, reproducibility, and measurement uncertainty at 95% confidence interval were comparable between both media under evaluation. However, at the level of naturally contaminated samples, the performance of CHROMagar TM Listeria medium was refutable as the presence of high number of competitive microorganisms reduced the clarity of the medium. The current emphasis in ensuring microbiological safety which requires use of accredited laboratories has led to measurable need for measurement uncertainty to ensure reliability of test results for global acceptance
Anti-malarial drug artesunate restores metabolic changes in experimental allergic asthma
The anti-malarial drug artesunate possesses anti-inflammatory and anti-oxidative actions in experimental asthma, comparable to corticosteroid. We hypothesized that artesunate may modulate disease-relevant metabolic alterations in allergic asthma. To explore metabolic profile changes induced by artesunate in allergic airway inflammation, we analysed bronchoalveolar lavage fluid (BALF) and serum from naïve and ovalbumin-induced asthma mice treated with artesunate, using both gas and liquid chromatography-mass spectrometry metabolomics. Pharmacokinetics analyses of serum and lung tissues revealed that artesunate is rapidly converted into the active metabolite dihydroartemisinin. Artesunate effectively suppressed BALF total and differential counts, and repressed BALF Th2 cytokines, IL-17, IL-12(p40), MCP-1 and G-CSF levels. Artesunate had no effects on both BALF and serum metabolome in naïve mice. Artesunate promoted restoration of BALF sterols (cholesterol, cholic acid and cortol), phosphatidylcholines and carbohydrates (arabinose, mannose and galactose) and of serum 18-oxocortisol, galactose, glucose and glucouronic acid in asthma. Artesunate prevented OVA-induced increases in pro-inflammatory metabolites from arginine–proline metabolic pathway, particularly BALF levels of urea and alanine and serum levels of urea, proline, valine and homoserine. Multiple statistical correlation analyses revealed association between altered BALF and serum metabolites and inflammatory cytokines. Dexamethasone failed to reduce urea level and caused widespread changes in metabolites irrelevant to asthma development. Here we report the first metabolome profile of artesunate treatment in experimental asthma. Artesunate restored specific metabolic perturbations in airway inflammation, which correlated well with its anti-inflammatory actions. Our metabolomics findings further strengthen the therapeutic value of using artesunate to treat allergic asthma
New Records of the Spider Fauna From Sarawak, Malaysia
SHORT COMMUNICATION New Records of the Spider Fauna from Sarawak, Malaysi
Deep learning system to predict the 5-year risk of high myopia using fundus imaging in children
Our study aims to identify children at risk of developing high myopia for timely assessment and intervention, preventing myopia progression and complications in adulthood through the development of a deep learning system (DLS). Using a school-based cohort in Singapore comprising 998 children (aged 6-12 years old), we train and perform primary validation of the DLS using 7456 baseline fundus images of 1878 eyes; with external validation using an independent test dataset of 821 baseline fundus images of 189 eyes together with clinical data (age, gender, race, parental myopia, and baseline spherical equivalent (SE)). We derive three distinct algorithms - image, clinical, and mix (image + clinical) models to predict high myopia development (SE ≤ -6.00 diopter) during teenage years (5 years later, age 11-17). Model performance is evaluated using the area under the receiver operating curve (AUC). Our image models (Primary dataset AUC 0.93-0.95; Test dataset 0.91-0.93), clinical models (Primary dataset AUC 0.90-0.97; Test dataset 0.93-0.94) and mixed (image + clinical) models (Primary dataset AUC 0.97; Test dataset 0.97-0.98) achieve clinically acceptable performance. The addition of 1 year SE progression variable has minimal impact on the DLS performance (clinical model AUC 0.98 versus 0.97 in the primary dataset, 0.97 versus 0.94 in the test dataset; mixed model AUC 0.99 versus 0.97 in the primary dataset, 0.95 versus 0.98 in test dataset). Thus, our DLS allows prediction of the development of high myopia by teenage years amongst school-going children. This has potential utility as a clinical decision support tool to identify "at-risk" children for early intervention.info:eu-repo/semantics/publishedVersio
SPHK1 regulates proliferation and survival responses in triplenegative breast cancer
Triple-negative breast cancer (TNBC) is characterized by unique aggressive behavior and lack of targeted therapies. Among the various molecular subtypes of breast cancer, it was observed that TNBCs express elevated levels of sphingosine kinase 1 (SPHK1) compared to other breast tumor subtypes. High levels of SPHK1 gene expression correlated with poor overall and progression- free survival, as well as poor response to Doxorubicin-based treatment. Inhibition of SPHK1 was found to attenuate ERK1/2 and AKT signaling and reduce growth of TNBC cells in vitro and in a xenograft SCID mouse model. Moreover, SPHK1 inhibition by siRNA knockdown or treatment with SKI-5C sensitizes TNBCs to chemotherapeutic drugs. Our findings suggest that SPHK1 inhibition, which effectively counteracts oncogenic signaling through ERK1/2 and AKT pathways, is a potentially important anti-tumor strategy in TNBC. A combination of SPHK1 inhibitors with chemotherapeutic agents may be effective against this aggressive subtype of breast cancer
Bio-based rhamnolipids production and recovery from waste streams: Status and Perspectives
Bio-based rhamnolipid production from waste streams is gaining momentum nowadays because of increasing market demand, huge range of applications and its economic and environment friendly nature. Rhamnolipid type biosurfactants are produced by microorganisms as secondary metabolites and have been used to reduce surface/interfacial tension between two different phases. Biosurfactants have been reported to be used as an alternative to chemical surfactants.Pseudomonas sp.has been frequently used for production of rhamnolipid. Various wastes can be used in production of rhamnolipid. Rhamnolipids are widely used in various industrial applications. The present review provides information about structure and nature of rhamnolipid, production using different waste materials and scale-up of rhamnolipid production. It also provides comprehensive literature on various industrial applications along with perspectives and challenges in this research area.Authors are grateful to the management of Gujarat Pollution Control Board, Gandhinagar, Gujarat, India for providing necessary facilities to perform literature review presented in this paper.info:eu-repo/semantics/publishedVersio
Constraint structure of O(3) nonlinear sigma model revisited
We study the constraint structure of the O(3) nonlinear sigma model in the
framework of the Lagrangian, symplectic, Hamilton-Jacobi as well as the
Batalin-Fradkin-Tyutin embedding procedure.Comment: 17 page
Characterization of skin sympathetic nerve activity in patients with cardiomyopathy and ventricular arrhythmia
Background
Heightened sympathetic nerve activity is associated with occurrence of ventricular arrhythmia (VA).
Objective
To investigate the association of skin sympathetic nerve activity (SKNA) and VA occurrence.
Methods
We prospectively enrolled 65 patients with severe cardiomyopathy. Of these, 39 had recent sustained VA episodes (VA-1 group), 11 had intractable VA undergoing sedation with general anesthesia (VA-2 group), and 15 had no known history of VA (VA-Ctrl group). All patients had simultaneous SKNA and electrocardiogram recording. SKNA was assessed using an average value (aSKNA), a variable value (vSKNA), and the number of bursts of SKNA (bSKNA).
Results
The VA-1 group had higher aSKNA and vSKNA compared with the VA-Ctrl group (aSKNA: 1.41 ± 0.53 μV vs 0.98 ± 0.41 μV, P = .003; vSKNA: 0.52 ± 0.22 μV vs 0.30 ± 0.16 μV, P 15% reduction in aSKNA after therapy was associated with a lower subsequent VA event rate (hazard ratio, 0.222; 95% CI, 0.057–0.864; P = .03).
Conclusion
Patients with VA had increased SKNA as compared with control. Both SKNA and sustained VA could be suppressed by general anesthesia. The aSKNA at baseline was an independent predictor of VA recurrence
Acute safety, effectiveness, and real-world clinical usage of ultra-high density mapping for ablation of cardiac arrhythmias: results of the TRUE HD study
AIMS: The objective of this study was to verify acute safety, performance, and usage of a novel ultra-high density mapping system in patients undergoing ablation procedure in a real-world clinical setting. METHODS AND RESULTS: The TRUE HD study enrolled patients undergoing catheter ablation with mapping for all arrhythmias (excluding de novo atrial fibrillation) who were followed for 1 month. Safety was determined by collecting all serious adverse events and adverse events associated with the study devices. Performance was determined as the composite of: ability to map the arrhythmia/substrate, complete the ablation applications, arrhythmia termination (where applicable), and ablation validation. Use of mapping system in the ablation validation workflow was also evaluated. Among the 519 patients who underwent a complete (504) or attempted (15) procedure, 21 (4%) serious ablation-related complications were collected, with 3 (0.57%) potentially related to the mapping catheter. Four hundred and twenty treated patients resulted in a successful procedure confirmed by arrhythmia-specific validation techniques (83.3%; 95% confidence interval: 79.8-86.5%). A total of 1419 electroanatomical maps were created with a median acquisition time of 9:23 min per map. Of these, 372 maps in 222 (44%) patients were collected for ablation validation purposes. Following validation mapping, 162/222 (73%) patients required additional ablation. CONCLUSION: In the TRUE HD study mapping was associated with rates of acute success and complications consistent with previously published reports. Importantly, a low percentage of events (0.57%) was attributed to the mapping catheter. When performed, validation mapping was useful for identifying additional targets for ablation in the majority of patients
Gradient microfluidics enables rapid bacterial growth inhibition testing
Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (<4 days, compared to weeks in a culture flask)
- …