4,424 research outputs found

    The general traveling wave solutions of the Fisher type equations and some related problems

    Get PDF
    In this article, we introduce two recent results with respect to the integrality and exact solutions of the Fisher type equations and their applications. We obtain the sufficient and necessary conditions of integrable and general meromorphic solutions of these equations by the complex method. Our results are of the corresponding improvements obtained by many authors. All traveling wave exact solutions of many nonlinear partial differential equations are obtained by making use of our results. Our results show that the complex method provides a powerful mathematical tool for solving a great number of nonlinear partial differential equations in mathematical physics. We will propose four analogue problems and expect that the answer is positive, at last

    Decoupling of the Antiferromagnetic and Insulating States in Tb doped Sr2IrO4

    Get PDF
    Sr2IrO4 is a spin-orbit coupled insulator with an antiferromagnetic (AFM) transition at TN=240 K. We report results of a comprehensive study of single-crystal Sr2Ir1-xTbxO4. This study found that mere 3% (x=0.03) tetravalent Tb4+(4f7) substituting for Ir4+ (rather than Sr2+) completely suppresses the long-range collinear AFM transition but retains the insulating state, leading to a phase diagram featuring a decoupling of magnetic interactions and charge gap. The insulating state at x=0.03 is characterized by an unusually large specific heat at low temperatures and an incommensurate magnetic state having magnetic peaks at (0.95, 0, 0) and (0, 0.95, 0) in the neutron diffraction, suggesting a spiral or spin density wave order. It is apparent that Tb doping effectively changes the relative strength of the SOI and the tetragonal CEF and enhances the Hund's rule coupling that competes with the SOI, and destabilizes the AFM state. However, the disappearance of the AFM accompanies no metallic state chiefly because an energy level mismatch for the Ir and Tb sites weakens charge carrier hopping and renders a persistent insulating state. This work highlights an unconventional correlation between the AFM and insulating states in which the magnetic transition plays no critical role in the formation of the charge gap in the iridate.Comment: 8 figure

    Effect of the momentum dependence of nuclear symmetry potential on the transverse and elliptic flows

    Full text link
    In the framework of the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model, effect of the momentum dependence of nuclear symmetry potential on nuclear transverse and elliptic flows in the neutron-rich reaction 132^{132}Sn+124^{124}Sn at a beam energy of 400 MeV/nucleon is studied. We find that the momentum dependence of nuclear symmetry potential affects the rapidity distribution of the free neutron to proton ratio, the neutron and the proton transverse flows as a function of rapidity. The momentum dependence of nuclear symmetry potential affects the neutron-proton differential transverse flow more evidently than the difference of neutron and proton transverse flows as well as the difference of proton and neutron elliptic flows. It is thus better to probe the symmetry energy by using the difference of neutron and proton flows since the momentum dependence of nuclear symmetry potential is still an open question. And it is better to probe the momentum dependence of nuclear symmetry potential by using the neutron-proton differential transverse flow and the rapidity distribution of the free neutron to proton ratio.Comment: 6 pages, 6 figures, to be published by EPJ

    The cell of origin dictates the temporal course of neurofibromatosis-1 (Nf1) low-grade glioma formation.

    Get PDF
    Low-grade gliomas are one of the most common brain tumors in children, where they frequently form within the optic pathway (optic pathway gliomas; OPGs). Since many OPGs occur in the context of the Neurofibromatosis Type 1 (NF1) cancer predisposition syndrome, we have previously employed Nf1 genetically-engineered mouse (GEM) strains to study the pathogenesis of these low-grade glial neoplasms. In the light of the finding that human and mouse low-grade gliomas are composed of Olig2+ cells and that Olig2+ oligodendrocyte precursor cells (OPCs) give rise to murine high-grade gliomas, we sought to determine whether Olig2+ OPCs could be tumor-initiating cells for Nf1 optic glioma. Similar to the GFAP-Cre transgenic strain previously employed to generate Nf1 optic gliomas, Olig2+ cells also give rise to astrocytes in the murine optic nerve in vivo. However, in contrast to the GFAP-Cre strain where somatic Nf1 inactivation in embryonic neural progenitor/stem cells (Nf1flox/mut; GFAP-Cre mice) results in optic gliomas by 3 months of age in vivo, mice with Nf1 gene inactivation in Olig2+ OPCs (Nf1flox/mut; Olig2-Cre mice) do not form optic gliomas until 6 months of age. These distinct patterns of glioma latency do not reflect differences in the timing or brain location of somatic Nf1 loss. Instead, they most likely reflect the cell of origin, as somatic Nf1 loss in CD133+ neural progenitor/stem cells during late embryogenesis results in optic gliomas at 3 months of age. Collectively, these data demonstrate that the cell of origin dictates the time to tumorigenesis in murine optic glioma

    Silicon (Si) biochar for the mitigation of arsenic (As) bioaccumulation in spinach (Spinacia oleracean) and improvement in the plant growth

    Get PDF
    In many parts of the world, growing crops on polluted soils often leads to elevated levels of pollutants in plant tissues. Minimizing the transfer of these pollutants into edible plant tissues while improving plant growth and productivity is a major area of research. In this study, we investigated the efficiency of silicon-modified biochar in reducing the uptake of As(III) in spinach (Spinacia oleracean) while simultaneously increasing the plant biomass. Unmodified biochars (uBC) and silicon-modified biochars (SiBC) were prepared from bamboo at 300 and 600 °C and characterized by Scanning Electron Microscopy with Energy Dispersive X-ray (SEM EDX), Fourier Transform Infrared Spectrometry (FTIR), X-ray Photoelectron Spectrometry (XPS), and X-ray Diffraction analysis (XRD). The bioaccumulation of As(III) in the edible part of spinach significantly decreased by 33.8 and 37.7% following the amendment of, respectively, 2% and 5% SiBC in soil. Biochar amendment increased the concentration of As(III) in pore water by 64.4% as a result of increased soil pH from 6.83 ± 0.4 to 8.01 ± 0.1 and dissolved organic carbon (DOC) from 7.02 ± 3.7 to 22.58 ± 3.7 g kg−1. However, the uptake of As(III) into spinach was prevented by silicon, which was preferentially transported to the plant through the same transport pathway as As(III). Dry biomass yield in spinach also significantly increased by 67.7% and strongly correlated (R2 = 0.97) with CaCl2 extractable Si in the plant. The results highlighted the effectiveness of SiBC in reducing the toxic effects of As in the environment and overall dietary exposure to the pollutant. The slow release of Si from biochars (<48.42%) compared to soil (87.39%) also suggested that SiBC can be efficient sources of Si fertilization for annual crops which can significantly reduce the increasing demand for Si fertilizers and their sustainable use in the environment

    Silicon (Si) biochar for the mitigation of arsenic (As) bioaccumulation in spinach (Spinacia oleracean) and improvement in the plant growth

    Get PDF
    In many parts of the world, growing crops on polluted soils often leads to elevated levels of pollutants in plant tissues. Minimizing the transfer of these pollutants into edible plant tissues while improving plant growth and productivity is a major area of research. In this study, we investigated the efficiency of silicon-modified biochar in reducing the uptake of As(III) in spinach (Spinacia oleracean) while simultaneously increasing the plant biomass. Unmodified biochars (uBC) and silicon-modified biochars (SiBC) were prepared from bamboo at 300 and 600 °C and characterized by Scanning Electron Microscopy with Energy Dispersive X-ray (SEM EDX), Fourier Transform Infrared Spectrometry (FTIR), X-ray Photoelectron Spectrometry (XPS), and X-ray Diffraction analysis (XRD). The bioaccumulation of As(III) in the edible part of spinach significantly decreased by 33.8 and 37.7% following the amendment of, respectively, 2% and 5% SiBC in soil. Biochar amendment increased the concentration of As(III) in pore water by 64.4% as a result of increased soil pH from 6.83 ± 0.4 to 8.01 ± 0.1 and dissolved organic carbon (DOC) from 7.02 ± 3.7 to 22.58 ± 3.7 g kg−1. However, the uptake of As(III) into spinach was prevented by silicon, which was preferentially transported to the plant through the same transport pathway as As(III). Dry biomass yield in spinach also significantly increased by 67.7% and strongly correlated (R2 = 0.97) with CaCl2 extractable Si in the plant. The results highlighted the effectiveness of SiBC in reducing the toxic effects of As in the environment and overall dietary exposure to the pollutant. The slow release of Si from biochars (<48.42%) compared to soil (87.39%) also suggested that SiBC can be efficient sources of Si fertilization for annual crops which can significantly reduce the increasing demand for Si fertilizers and their sustainable use in the environment

    Lumican Peptides: Rational Design Targeting ALK5/TGFBRI

    Get PDF
    Lumican, a small leucine rich proteoglycan (SLRP), is a component of extracellular matrix which also functions as a matrikine regulating multiple cell activities. In the cornea, lumican maintains corneal transparency by regulating collagen fibrillogenesis, promoting corneal epithelial wound healing, regulating gene expression and maintaining corneal homeostasis. We have recently shown that a peptide designed from the 13 C-terminal amino acids of lumican (LumC13) binds to ALK5/TGFBR1 (type1 receptor of TGF beta) to promote wound healing. Herein we evaluate the mechanism by which this synthetic C-terminal amphiphilic peptide (LumC13), binds to ALK5. These studies clearly reveal that LumC13-ALK5 form a stable complex. In order to determine the minimal amino acids required for the formation of a stable lumican/ALK5 complex derivatives of LumC13 were designed and their binding to ALK5 investigated in silico. These LumC13 derivatives were tested both in vitro and in vivo to evaluate their ability to promote corneal epithelial cell migration and corneal wound healing, respectively. These validations add to the therapeutic value of LumC13 (Lumikine) and aid its clinical relevance of promoting the healing of corneal epithelium debridement. Moreover, our data validates the efficacy of our computational approach to design active peptides based on interactions of receptor and chemokine/ligand.NIH/NEI grantsResearch to Prevent BlindnessOhio Eye Research FoundationUniv Cincinnati, Dept Ophthalmol, Cincinnati, OH 45267 USAUniv Fed Sao Paulo, Dept Bioquim, Sao Paulo, BrazilUniv Houston, Coll Optometry, Ocular Surface Inst, Houston, TX 77204 USAUniv Fed Sao Paulo, Dept Bioquim, Sao Paulo, BrazilNIH/NEI grants: RO1 EY011845NIH/NEI grants: R01 021768Web of Scienc

    The SAMI Galaxy Survey: energy sources of the turbulent velocity dispersion in spatially-resolved local star-forming galaxies

    Get PDF
    We investigate the energy sources of random turbulent motions of ionised gas from Hα\alpha emission in eight local star-forming galaxies from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. These galaxies satisfy strict pure star-forming selection criteria to avoid contamination from active galactic nuclei (AGN) or strong shocks/outflows. Using the relatively high spatial and spectral resolution of SAMI, we find that -- on sub-kpc scales our galaxies display a flat distribution of ionised gas velocity dispersion as a function of star formation rate (SFR) surface density. A major fraction of our SAMI galaxies shows higher velocity dispersion than predictions by feedback-driven models, especially at the low SFR surface density end. Our results suggest that additional sources beyond star formation feedback contribute to driving random motions of the interstellar medium (ISM) in star-forming galaxies. We speculate that gravity, galactic shear, and/or magnetorotational instability (MRI) may be additional driving sources of turbulence in these galaxies.Comment: 11 pages, 5 figures, 3 tables. Accepted by MNRA
    • …
    corecore